

Metaphor-Based Design of High-
Throughput Screening Process
Interfaces

 Abstract

This paper describes work on developing usable
interfaces for creating and editing methods for high-
throughput screening of chemical and biological
compounds in the domain of life sciences automation. A
modified approach to metaphor-based interface design
was used as a framework for developing a screening
method editor prototype analogous to the presentation
of a recipe in a cookbook. The prototype was compared
to an existing screening method editor application in
terms of effectiveness, efficiency, and satisfaction of
novice users and was found to be superior.

Keywords
Metaphor-based design, cognitive task analysis,
usability evaluation, life sciences automation

Introduction
System designers have identified various ways to deal
with the increasing complexity of user interfaces. One
of these is the metaphor-based approach where
properties of an interface are designed to take on the
appearance and behavior of real-world devices or
objects in an environment that is familiar to system
users. Interface metaphors enable users to map
knowledge from a familiar source domain to an

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a
fee. Copyright 2006, ACM.

David B. Kaber

North Carolina State University

400 Daniels Hall

Raleigh, NC 27695 USA

dbkaber@ncsu.edu

Noa Segall

Duke University Medical Center

Box 3094

Durham, NC 27710 USA

noa.segall@duke.edu

Rebecca S. Green

North Carolina State University

400 Daniels Hall

Raleigh, NC 27695 USA

seawalker04@yahoo.com

Vol. 2, Issue 4, August 2007, pp. 190-210

 191

unfamiliar target domain, allowing them to use prior
experience to comprehend and navigate in novel
situations (Neale & Carroll, 1997). Thus, metaphors are
viewed as an important tool for facilitating learning and
novice use of interfaces, since it is easier to construct a
new concept from more established concepts than to
develop understanding of an unknown abstract idea
(Carroll & Mack, 1985). Other research has indicated
that metaphor-based design may enhance interface
usability (Kuhn & Blumenthal, 1996) and user
satisfaction (e.g., Dutton, Foster, & Jack, 1999).

Target Domain
Contemporary high-throughput screening (HTS)
processes involve chemical-based assays of organic and
inorganic compounds for effects on human cellular
functions, or enzyme reactions that are common in cells
(Entzian, Allwardt, Holzmüller-Laue et al., 2005).
Among the uses of HTS is the testing of compounds
that may have the potential to serve as bases for drug
derivatives for use in future medications to treat
cancer, viruses, and more.

At the University of Rostock (Germany) Center for Life
Sciences Automation (CELISCA), marine compounds
undergo enzyme-based (for example, Trypsin) testing
to identify compounds that might be useful for such
drug derivative development. Testing the compounds
involves several steps, including pipetting liquids
(enzyme substrates, test compound extracts and other
reagents) at different quantities and concentrations into
micro (culture)- plates with many sample wells;
incubating the micro-plates to elicit enzymatic reactions
similar to those that would occur in the human body;
and analyzing the reactions using optical
measurements.

Complete automation of enzyme-based screening (such
as a Trypsin test) includes the integration of an
optimized robot for chemical analysis (ORCA) with
analytical measurement devices on a process line (see
Figure 1). The ORCA, which is programmed, controlled,
and monitored from a central process control system
(PCS), transports micro-plates to and from the various
workstations on the screening line. The automated
devices on the line include a bar coder for labeling and
tracking micro-plates in which compounds are tested;
an automated pipetting (liquid transfer) robot for filling
micro-plates with liquids; an incubator for bringing the
temperature of reactions in the micro-plates to human
body temperature; and an automated micro-plate
reader for analyzing the enzyme activity in each well of
a plate using luminance tests of light reflected off
samples. The reaction of various compounds with the
enzyme causes biological products to be generated in
wells that turn different colors. Target wavelengths (or
reaction products) are identified by biochemists in
advance of the screening process.

With the advent of highly automated analytical
measurement devices that can transport and chemically
evaluate thousands of biological samples on a daily
basis, the role of human operators in HTS has
dramatically shifted. Time-consuming manual material
handling tasks such as pipetting biological compounds
into micro-plates and mixing compounds with reagents,
which were traditionally performed manually by
operators, are now fully automated with robotics. The
human’s task has become that of supervisory control –
planning, managing, and analyzing the results of highly
automated screening lines.

 192

Specialized biological screening
tests, such as the Trypsin
screening test, are developed by
scientists and published in the
biotechnology literature (Thurow,
Entzian, & Eberlein, 2004).
“Bench-top” versions describe how
to manually perform a particular
screening assay.

Biopharmacologists at CELISCA
adapt the manual bench-top
protocol of the screening tests to
automated HTS lines (Thurow et
al., 2004). This process involves
steps, such as identifying the
appropriate micro-plate to be used
in the automated assay,
determining the mixture of liquids
within each micro-plate, selecting

and programming the automated devices that will be
used to perform the assay, planning the pipetting
processes (for example, which pipetting tips and
reservoirs will be used), and establishing an optimal
sequence of assay steps.

After developing the automated screening test protocol,
operators use a computer-based screening “method
editor” to program the specific methods that will be
executed by devices and the sequence. For example,
Beckman-Coulter currently publishes a software
application called SAMI® (SagianTM Automated Method
Development Interface) that allows a biochemist to
develop graphical models (resembling flow charts) of
screening tests to be conducted on a HTS line.
Screening methods are constructed at the user

interface by dragging icons representing available HTS
devices (which will be used in the assay) to a central
“scratch pad” and connecting them with arrows to
define transportation of micro-plates among the device
workstations by the ORCA (see Figure 2). Icons
representing different types of plates are also available
for further specifying a method. Operators then
program pipetting robots and plate readers, which have
their own proprietary control software. These devices
are then integrated in the screening process with the
method editor and the PCS, including an executive
software controller.

The screening method editor includes standard
Windows action/configuration dialogs for all devices on
the HTS line, which operators use to set device
parameters and to send data to the pipetting robot and
plate reader software modules. For biopharmacologists,
who may prefer to have samples (or the micro-plates
that contain them), rather than HTS devices, at the
“center” of the method-development process, this
approach to programming the system may be less
intuitive.

A typical HTS experiment poses a high cognitive
workload for supervisors, who must keep track of the
timing of process steps, whether robot motions are
accurate, and whether chemical reactions are occurring
safely. Errors can occur at many different phases of the
screening process. For example, robot material
handling errors can be caused by initial incorrect
placement of labware by operators. Chemical reactions
may not progress as planned because of operator
errors in programming pipetting operations or wear of
device components (for example, cables and pumps in
the pipetting robot), leading to delays in reactions or

Figure 1. HTS screening line
at CELISCA with labels of
automated devices. (Note:
The Biomek FX is a
commercially available
pipetting robot. Plate readers
are used for ultraviolet (UV)
and fluorescence and
luminance testing of samples
in plates. “Hotels” are
temporary storage areas for
micro-plates. The “print and
apply” device is a barcoding
machine.)

 193

the need to scrap an entire experiment. This can be
very costly to the test facility because many of the
organisms being investigated are extremely rare and
extracts are expensive to develop.

Consequently, operators may
need to periodically intervene
in the master robot control to
prevent such errors and to
keep a line from “crashing”.
The process control interface
must provide the capability
for both off-line and near
real-time, closed-loop
programming of process
events based on the progress
of an experiment.

Cognitive Task Analysis
To address the potential for
costly errors, we previously

evaluated the HTS process with the goal of identifying
functional limitations of automated devices and
usability problems with existing software interfaces for
programming, executing, and analyzing screening
experiments (Kaber, Segall, Green, et al., 2006). To
this end, two cognitive task analysis (CTA) methods
were employed, including abstraction hierarchy (AH)
modeling and goal-directed task analysis (GDTA). An
AH model is the representation of a work system along
multiple levels of abstraction (Rasmussen, 1985),
ranging from physical component properties to system
purposes, which are linked in the model based on
means-end relationships. AH models have been used
for systems analysis and design and as a framework for
describing control tasks necessary to maintain

adequate system performance (Rasmussen, 1985). We
developed AH models for all automated devices
integrated in the HTS line at CELISCA, including the
automated pipetting robot (Biomek2000®), incubator,
ORCA (material transport robot), and automated micro-
plate reader.

For example, in the AH model of the bar coder, at the
highest level of abstraction, the purpose is specified as
assigning IDs to plates and recognizing plate labels
during processing. One of the generic functions to this
goal is the “process of printing a barcode”. This
includes generalized functions of label feeding and
applying thermal ink. These functions are supported by
components, including the printer and label paper
feeder.

A separate AH model was developed to represent the
software or automation used to control the mechanisms
of the bar coder. One of the general functions in this
model is “printing control,” including subfunctions of
“selecting a barcode type,” “defining the content of the
code,” and “storing the code.” These functions are
supported by different interface features, including
dialogs presenting label-type options for selection and
input windows for manual string entry or selection of
files containing lists of defined plate IDs.

GDTA is a methodology that focuses on identifying
operator critical decisions and situation awareness (SA)
requirements relevant to performing complex systems
control (Endsley, 1993). GDTA uses a diagram format
similar to hierarchical task analysis, but concentrates
on the organization of an operator’s goal set and not on
low-level operations with system interfaces. The
outcomes of GDTA include perceptual requirements for

Figure 2. SAMI® method editor
interface by Beckman-Coulter.

 194

task performance and operator needs in terms of
system-state comprehension and projection. The
results can be used as a basis for display design,
training program development, and operator selection
(Usher & Kaber, 2000).

We developed a GDTA describing biopharmacologist
goals, tasks, decisions, and information requirements
relevant to supervisory control of the HTS line. The
complete GDTA included 25 high-level goals, 20
subgoals, and a total of 88 tasks to these subgoals. On
average, there were 4.4 tasks to each subgoal and 2.2
critical decisions per task. An analysis of the SA
requirements associated with the various operator
decisions revealed a total of 228 unique pieces of task
information.

For example, one of the subgoals in the GDTA deals
with the application and reading of barcode labels
during the HTS process. This goal involves two tasks:
integrating the bar coder into the process (in the PCS
software) and determining how it will be used during
the assay. The operator must make two decisions when
integrating the bar coder: what information will be
included in the label and where the label will be applied
to a micro-plate. The information required to address
these decisions is the code that will be used on the
label. To achieve the second task, that of determining
the functions of the bar coder, the operator must
decide whether a new barcode needs to be applied to
micro-plates or whether an existing barcode is to be
read. In addressing this decision, the operator needs to
know whether a barcode is already present on the
micro-plates (from the manufacturer or client) and
what step is to follow bar coding in the assay process.

To facilitate data collection (using the micro-plate
reader), for example, it is first necessary to read the
content of the barcode label. These operator tasks,
decisions, and information requirements are captured in
hierarchical outline form in the GDTA.

The combination of AH models, describing screening
line devices and automation, with the results of the
GDTA on biopharmacologist performance of HTS
operations, allowed us to determine whether the task
and functional requirements of operators were being
met by existing system elements. The generalized
functions of robotic devices, identified in the AH
models, were related to the functions that operators
required to achieve screening task goals, as captured in
the GDTA. Furthermore, operator information
requirements for task decisions, as identified through
the GDTA, were compared with specification of current
interface action sequences and display content based
on the AH models to identify potential usability issues
with the existing software interfaces (for example,
SAMI®). That is, we were able to determine whether
particular screening method editor displays and action
sequences led to the information operators needed for
certain process decisions. In our previous work, we
made direct comparison of the GDTA results and AH
models to formulate interface design and automation
functionality recommendations for enhancing the
existing software applications used in the HTS process
at CELISCA (Kaber et al., 2006).

Design recommendations were formulated for all goals
in the GDTA that pertained to the use of HTS software.
The recommendations addressed usability goals based
on Nielsen’s (1993) and Norman’s (1995) work,
including providing a good match between the system

 195

and the real world, thereby promoting operator
recognition rather than recall, enhancing the visibility of
system status, preventing errors, and developing a
parsimonious interface design. These recommendations
ultimately were reflected in a new prototype of a
control dialog as part of the existing screening method
editor software. (We describe this prototype later in the
paper, along with a metaphor-based revision of the
primary method editor interface and usability
evaluations.)

The objective of this research was to develop an
interface design metaphor that could be used as a
framework for implementing the specific design
recommendations resulting from the previous CTAs to
create usable and effective HTS supervisory control and
method editing interfaces. Although the
recommendations for automated device control dialogs
and the existing HTS method editing software were
useful, we needed an overarching framework in which
to organize the recommendations for coherent design
revisions. We conducted two usability evaluations to
assess whether application of the metaphor and the
specific design modifications led to actual
improvements in usability and effectiveness for system
operators. In general, the evaluations served to
establish whether the new interface designs were
suitable for the purpose of HTS device control and
assay method editing, as well as the utility of the
metaphor for this domain.

The Cookbook Metaphor
A cookbook typically contains multiple recipes, each
with its own set of task components, such as the
preparation procedure, the required ingredients along
with their quantities, the equipment needed to prepare

the dish, and estimates of how much time it will take to
prepare the dish based on the number of servings.
Similarly, the bench-top protocols used in biological
screening processes, which describe how to manually
perform a particular screening test (assay), identify
required reagents along with their quantities, the
equipment needed to perform the assay, and a detailed
preparation procedure. When comparing a cookbook
and a bench-top protocol, the chemical and biological
reagents in the protocol become the recipe’s
ingredients, the concentrations and amounts of the
reagents are the ingredient amounts, the automated
devices become the cooking equipment, and the
protocol method becomes the “dish” preparation
procedures. This strong similarity in the structure of the
two concepts, cooking and bench-top assaying, led to
our development and use of a cookbook metaphor for
redesigning the interfaces of the method editing
software previously created for the HTS domain.

Cookbook metaphors have been used in the domain of
software development for organizing help utilities
according to the overall layout of a cookbook. For
example, Schappert, Sommerland, and Pree (1995)
proposed the use of an “active cookbook” tool that
provides semi-automated assistance to guide
programmers in developing new software. “Recipes” in
this cookbook describe (in an informal way) how to
code certain generic application tasks. They contain a
purpose, procedure, and source code examples. The
“recipes” serve as a basis for generating source code
based on programmer decisions and they help to
structure the code by requiring that certain steps in the
procedure be carried out before others. In Schappert et
al.’s (1995) work, the cookbook metaphor is applied at
the book level; that is, the active cookbook has

 196

components or features that represent those of a food
cookbook. However, no prior work appears to have
used the style of presentation of recipes in a cookbook
as a metaphor specifically for interface design.

As a chef normally writes the cooking procedure for a
recipe in natural language, we also wanted to prototype
the capability for biochemists to develop automated
assay methods using natural language processing
(NLP). Previous use of the cookbook metaphor in
software development has not integrated use of NLP for
user input to automated assistance applications. The
metaphor-based method editor interface design
presented below incorporates a mock-NLP capability for
assay programming.

In an actual application, natural language
understanding systems must convert samples of human
language into more formal representations that a
computer program can manipulate. Some of the
problems that make NLP difficult to implement,
including text segmentation, word sense
disambiguation, syntactic ambiguity, and speech acts,
restrict NLP integration in intelligent interfaces (Dale,
Moisl & Somers, 2000). However, since only a finite
vocabulary is required to develop automated assay
procedures from bench-top protocols, we expected this
limitation to have little effect on an actual NLP-based
HTS interface, and therefore, we prototyped this
capability in our redesigned screening method editor
interface. Other interface features were also
incorporated in the method editor interface to capture
the cookbook metaphor, such as lists of tools and
reagents to be used in the HTS process being
programmed. These are discussed in more detail below.

Usability Goals and Metaphor-Based
Interface Design
Based on a review of human-computer interaction
design literature, we adapted Neale and Carroll’s
(1997) metaphor-based design methodology to
prototype a new method editing interface for HTS assay
development. The usability of this interface was
compared to that of Beckman-Coulter’s SAMI® method
editor currently in use at CELISCA. Three overall
usability goals were identified for the new interface: (1)
increased efficiency, that is, a shorter task completion
time; (2) enhanced effectiveness, that is, a smaller
number of errors; and (3) improved user satisfaction. It
was hypothesized that the metaphor-based method
editor prototype would be more efficient and effective
and that users’ reaction to it would be positive.

To develop a research foundation for implementing
metaphor-based interface design, we reviewed work on
approaches to using metaphors (e.g., Alty, Knott,
Anderson et al., 2000; Carroll & Mack, 1985; Neale &
Carroll, 1997). Neale and Carroll (1997) developed a
five-step methodology, with the first stage involving
identification of system functionality as a basis for
mapping the system to potential source domains
(metaphors). In the second stage, a designer is to
generate possible metaphors, like the cookbook
metaphor for the HTS protocol development. (We have
already presented some information in line with these
steps.) Neale and Carroll (1997) refer to several
methods similar to iterative design processes, such as
interviewing users, analyzing users’ work context, and
empirically analyzing their semantic and procedural
knowledge, as related to the system.

 197

The next stage is to determine how user tasks and
methods at the conceptual interface relate to
achievement of goals and plans. The tasks, methods,
and appearance of the metaphor are analyzed for their
association with the goals and plans of the user and the
elements that they may work with in reality.

Stage four identifies discrepancies in the software
domain related to the metaphor by determining when
interface functions will lead users to perform erroneous
actions rather than leading to new insights into the
system domain.

The final stage provides strategies for assessing and
controlling these metaphor-interface mismatches. The
authors indicate that designers can use composite
metaphors, teach modification rules for elements not
represented by the metaphor, or encourage exploration
of the system features represented by the interface.
(Below we talk about complementing our cookbook
metaphor with a cooking metaphor to address some
discrepancies between assay method editing and
developing a cooking recipe.)

We adapted Neale and Carroll’s (1997) approach by
integrating the CTA techniques described above, as a
basis for designing enhanced displays and controls as
part of the HTS method editor interface. The first stage
of Neale and Carroll’s methodology involves identifying
the system functionality and the features a system
must have to meet user needs. To this end, we used
our AH models for the HTS devices and automation to
specify current system functionality. The device models
identified all components supporting specific functions.
The software models identified all existing interface
features for controlling HTS automation. The GDTA

content was used to identify users’ needs with respect
to the system components (for example, what type of
information was required from device displays to
support task performance).

In stage two of the methodology, the process of
generating possible metaphors was also based on the
empirical results of the GDTA. Like many CTA methods,
the GDTA involves observing operators at work and
conducting structured interviews on task goals,
decisions and information requirements, as Neale and
Carroll (1997) suggested.

The general procedure to HTS method programming
and control revealed through the GDTA supported our
identification of the cookbook as a possible metaphor
for structuring the information content of a “bench-top”
protocol for a biological assay. The major subgoals of
the GDTA related to the protocol development included:
“identify steps…,” “identify appropriate plates to use…,”
“establish plate configuration…,” “identify devices to
perform steps,” “identify time critical steps…,” and so
on. These goals are all akin to the goals of a chef in
cooking and led to the inspiration to use the cookbook
metaphor. As we stated, when comparing a cookbook
recipe and a bench-top protocol, for example, an
enzyme-based test, both contain a required ingredient
list, a list of the equipment needed to prepare the
dish/assay, and ordered preparation procedures for the
dish/assay.

With these three components in mind, our new
metaphor-based design of the screening method editor
is comprised of three main windows: (1) a window for
entering the assay procedure (deciphered by the
system using pseudo-NLP); (2) a window containing

 198

the required ingredients for the assay; and (3) a
window containing the equipment that will be used
throughout the assay (see Figure 3). A fourth window
was included to provide the user with a visual
representation (in the form of a flow chart) of the assay
procedures applied to micro-plates according to the
“recipe” input by the biochemist in natural language.
Flow charts of recipe preparation procedures can be
found in many basic cookbooks. Thus, the flow chart
window did not represent a violation of our metaphor
(in format).

In the third stage of Neale and Carroll’s (1997)
methodology, we assessed whether the goals and plans
of a biochemist in HTS protocol development were
supported by the metaphor by comparing examples of
activities in developing a cookbook recipe with HTS
process development (see Table 1). We identified few
“breakdowns” of the metaphor. For example, multiple
instances of a HTS device in a tools palette interface
could be considered unbounded or unpredetermined in
the method-editing environment; however, multiple
uses of a device in the physical environment could be
considered bounded and predetermined. Similarly, the
specification of physical re-use of a particular utensil
could be considered unbounded and unpredetermined
in the development of new recipes for a cookbook but
might be expected in the actual cooking process.

Figure 3. Metaphor-based method editor prototype.

Therefore, the key differences between the physical
cookbook and the application of the cookbook metaphor
to the method-editing interface were addressed by
extending the metaphor to the basic process of cooking
to encompass our design notions.

 199

Table 1. Comparison of cookbook recipe components
and HTS process elements.

Cookbook Metaphor Prototype Feature

Writing recipe Using NLP to author
assay protocol

Specifying ingredients Identifying chemical and
biological reagents in
“Ingredients Window”

Identifying necessary
cooking utensils

Identifying automated
devices and tools for use
in “Tools Window”

Ingredient amounts Concentrations and
amounts of reagents

Reuse of utensils Multiple instances of
automated devices in a
“Tools Window” palette

Selection of mixer
attachments for use in dish
preparation

Selection of barcode
label to apply to micro-
plate; Selection of
pipetting tool for HTS
process

Selection of baking dish Selection of micro-plate

Related to the previous step, the fourth stage of Neale
and Carroll’s approach involves identifying
discrepancies in the software domain related to the
metaphor. They recommend covering as many aspects
of the interface design (suggested by the metaphor) as
possible, but remind designers of the importance of
focusing on communicating system functionality rather
than on mimicking every aspect of the source domain.
We found that the cookbook metaphor more accurately
reflected the functionality in some parts of the HTS
system than others. One example of a metaphor match
is the use of the micro-plate incubator in a HTS
protocol, as the device carries-out a process similar to

using an oven for cooking food. A metaphor mismatch
example is the barcode print and apply device, which is
used in the HTS environment for applying and reading
identification labels on micro-plates, as it has no direct
analogy with a recipe in a cookbook or typical
processes in the cooking domain. That is, in cooking,
one does not typically use a device to label materials
with barcodes prior to preparing a dish: materials in
cooking processes are typically uniquely recognizable
by a chef, as compared to an ORCA handling hundreds
of identical micro-plates.

This mismatch between the cookbook metaphor and
the HTS environment was addressed by extending the
concept of cooking utensils to appliances. In this case,
the barcode device was implemented as a configurable
cooking appliance. Therefore, the cookbook metaphor,
represented by the interface, more closely resembles
both the cookbook recipe and the cooking process.

Another mismatch example is the use of different
colored hyperlinks in the assay protocol to indicate
terminology or system references for which the editor
requires further detail from a user. A “traffic light”
metaphor was used for this feature (see Figure 3).
These interface properties are also not analogous to the
cookbook metaphor.

Both the third and fourth stages of the Neale and
Carroll (1997) method can be facilitated through
scenario-based analysis of interface prototypes.
Consequently, we developed a HTS scenario that
required interaction with prototype features including
those for the identification of plates/sources, liquid
transfer, heating, and returning micro-plates to home
positions. To further ensure that users could perform

 200

the tasks and methods with the interface by thinking
about the metaphor and relating features to their goals,
evaluations of the prototypes were conducted with
subject matter experts based on the defined scenario
(see below). In this manner, we also verified that the
prototype supported user tasks as revealed through the
GDTA.

The final stage of Neale and Carroll’s (1997) approach
is to provide strategies for assessing and controlling
metaphor-interface mismatches. We proposed to
develop and teach biochemists rules for elements not
directly represented by the metaphor, as in the case of
the bar-coder device. Another method for managing
mismatches is the use of composite metaphors, which
can create a match with one metaphor where a
mismatch occurs in another (Neale & Carroll, 1997).

Our use of the cooking process and traffic light
metaphors were examples of this. Finally, mismatches
may be handled by designing the interface such that it
will encourage exploration of system features without
penalty (Carroll & Mack, 1985). The colored hyperlinks
and flow chart support such investigation of the new
method editor prototype by allowing users to interact
with interface elements and to learn about their
function without affecting previous work.

This adaptation of Neale and Carroll’s (1997)
methodology resulted in an interface design supporting
a process- (or micro-plate) oriented approach to HTS
method programming. The metaphor-based prototype
was expected to be more intuitive and easier for
biochemists to use than the existing method editing
application currently installed at CELISCA, which
supports a device-oriented programming approach.

The new process-oriented method editor interface
requires a user to initially describe an assay procedure,
rather than identify the devices used to conduct
screening. The metaphor-based interface includes a
menu bar and toolbar, an assay name field and four
windows, specifically the Assay Procedure Window,
Process Flow Chart Window, Tools Window, and
Ingredients Window (Figure 3).

To program a new assay, the user types a sequence of
instructions in natural language (for example,
“...Remove 1 family of 96-well flat test micro-plates
from incubator and label using the bar coder...”) in the
Assay Procedure window. As text is entered, a flow
chart is automatically created in the Process Flow Chart
window (based on the NLP technology), documenting
the different steps that a micro-plate is to pass
through. The numbers of devices and amounts of
materials to be used in the process that are
recognizable by the system are also updated in the
Tools and Ingredients windows of the interface, based
on the assay description entered by the user. Finally,
certain keywords in the description (recognizable by the
system) that represent objects, such as devices,
equipment, or materials, become hyperlinks.

Red hyperlinks represent objects for which the system
needs further configuration or specification information
to operate (for example, what type of label should the
bar coder apply?). Yellow hyperlinks represent partially
defined objects for which the system needs some
additional information, but even if this information is
not provided, the method will run using its default
values. For example, if the user requests deep-well
micro-plates, the default micro-plate will be used, but
the number of wells in the micro-plate can also be

 201

specified. Green hyperlinks represent objects for which
the system has all the necessary information to
function – they are fully defined. Clicking on any
hyperlink (in the Assay Procedure, Process Flow Chart,
or Tools Windows) will open a configuration dialog for
the selected device or material. After the equipment or
material is configured, the associated hyperlink
becomes green.

Usability Evaluation
Two usability evaluations
were conducted, with the
first focusing on the new
bar coder
action/configuration dialog
(Kaber et al., 2006) and
the second dealing with the
prototype method editor
interface.

We reviewed various
usability evaluation
methods for validating
our approach to the
enhancement of the
existing HTS control
interface. We considered
survey methods, as Neale

and Carroll (1997) advised using surveys
to evaluate metaphor-based interface
design. Furthermore, Anderson, Smyth,
Knott et al. (1994) used a questionnaire to evaluate a
metaphor-based interface by requiring users to identify
the degree of agreement of, and to make confidence
ratings on, source and target domain pairings. This
allowed the designers to reason about the effectiveness

of source-target interactions and their associated
mappings. However, this type of assessment is largely
focused on evaluation of the metaphor and less on the
resulting usability of the interface design based on the
metaphor. For the purposes of our research, we
decided to use the System Usability Scale (SUS;
Brooke, 1996) to capture user responses pertaining to

satisfaction with
the new
prototype HTS
interfaces. This
survey has been
used in several
empirical
assessments of
usability (see
Brooke, 1996)
and provides a
basic indicator of
user preferences
among interface
alternatives. We
expected that
such a method
would reveal
whether users
preferred our
new interface to

the existing software
design, as influenced
by the match

between the system and the selected real-world analog
(the cookbook recipe and cooking).

Erickson (1990) suggests conducting usability
assessments by identifying user problems with existing

Figure 4. New bar coder interface.

 202

systems in the context of actual work tasks. We
thought this approach would also be useful for
determining whether users encountered more or fewer
problems in simulated method programming using the
metaphor-based prototype versus the existing
screening process control software.

Erickson (1990) also encourages the use of scenarios
for performing similar tasks with different interface
alternatives involving different interaction methods. We
also applied this approach by comparing the new
metaphor-based prototype to the existing (SAMI®)
method editor in developing a HTS protocol. The
scenario-based evaluation allowed us to assess if users
of the new prototype made fewer errors than users of
the existing interface and if they were able to complete
the scenario in less time.

Methodology
The first usability study involved five domain experts
comparing the new bar-coder dialog with the existing
software. The new dialog (Figure 4) was designed
based on the results of our AH modeling and GDTA and
reflected Nielsen’s (1993) usability heuristics, such as
providing prompt feedback. Three male and two female
biopharmacologists and process engineers at CELISCA
were asked to select and configure a barcode label for
application to micro-plates in a HTS process using both
interfaces. The software underlying the interfaces
recorded performance data, including time-to-subtask
completion and number of errors.

Once experts completed the task, they were asked to
fill out the SUS for both the existing and the new bar
coder dialogs. The survey included statements on 10
characteristics of interfaces (complexity, consistency,

learnability, ease of use, and so on). The subjects rated
their degree of agreement with statements like, “I think
this interface is unnecessarily complex,” on a scale
from 1 (strongly disagree) to 5 (strongly agree). They
were also asked to provide written comments on the
advantages and disadvantages of each interface
alternative.

In the second study, we evaluated our metaphor-based
approach to the redesign of the entire HTS method
editing software. We wanted to determine whether the
cookbook metaphor might enhance interface usability.
Again, we recruited five domain experts
(biopharmacologists and process engineers) at CELISCA
to evaluate both the new prototype and the SAMI®
method editor interfaces. Their ages ranged from 31 to
41 and three were male. They were novices when it
came to using the new prototype.

In addition to our work with experts at CELISCA, five
graduate students from North Carolina State University,
between 23 and 40 years old, were recruited to
evaluate only the SAMI® method editor interface in
terms of usability. Four of the students were male.
They were all novices at using the software, but some
had previously seen the application interface. We made
a comparison of the new prototype interface design, as
evaluated by the CELISCA personnel, with the original
SAMI® method editor interface evaluated by the
students in terms of errors committed with the
applications and the subjective satisfaction ratings.

At the beginning of the study, each participant was
provided with an introduction to the interface being
evaluated and its purpose. The participants were also
given brief user manuals, which included an overview

 203

and descriptions of the types of tasks, devices, and
software and how they are used for developing new
methods or controlling devices. Subsequent to
familiarization with the interface, the participants were
required to complete scenarios in which they
programmed a new assay procedure for the HTS line.

The users used the features of the existing SAMI® and
the new metaphor-based prototype for programming
the processes of micro-plate labeling, ingredient
transfers, and incubation. They were provided with
step-by-step instructions for following the scenarios,
including explanations of the purpose of each step.

During completion of the scenarios by the expert
biochemists from CELISCA, time-to-subtask completion
and the number and types of interface errors were
recorded by a Javascript embedded in an online version
of the new metaphor-based prototype. A semi-
functional prototype of the SAMI® method editor was
also developed in Java because of access limitations to
the actual installation of the software at CELISCA and
to allow us to remotely collect time-to-subtask
completion and the number of interface errors.

Subtasks in method programming included, for
example, configuring the bar coder for plate labeling
and configuring the incubator for sample heating. After
completing the task scenarios, CELISCA users filled-out
the SUS questionnaires for the existing application and
new prototypes. Since the NCSU users were novices to
the SAMI® interface, they only evaluated and
completed SUS questionnaires for that interface. They
were asked to rate the interface and dialogs in terms of
the 10 characteristics, and to comment on their
shortcomings and advantages.

Although the scenarios used with each interface were
designed to be similar in steps, task performance with
the prototype and the SAMI® editors was not identical
(from a functional perspective) because of certain
interface features. For example, to configure the
incubator, in both scenarios users were able to set the
incubation time. However, the incubator interface as
part of the metaphor-based prototype also allowed
users to set variables, such as temperature and
incubator gas mixture, which the SAMI® interface does
not include (in the existing system, these variables are
set at the physical incubator control panel). Thus, more
scenario steps were required for interacting with the
incubator dialog in using the new interface than in
using the existing SAMI® interface. Therefore, we
could only compare performance results for tasks that
were functionally similar across both interfaces. These
included: (1) assay development, which involved
dragging and dropping devices with the existing
interface and text entry in the new interface; and (2)
bar coder configuration, which involved selecting a label
location and content in both interfaces.

Results
Table 2 presents the subtask performance times for the
new bar coder prototype and SAMI® bar coder dialog
for the CELISCA participants in the first study. A one-
sided Wilcoxon Mann-Whitney test revealed no
significant differences in performance times for the bar-
coder configuration procedure among the two interfaces
(p>0.05). No errors were committed while using either
bar-coder interface. (Table 2 only presents data on
those subtasks for which statistical comparisons were
considered valid, based on functional similarities across
the SAMI and new prototype interfaces.)

 204

The subjective rating survey yielded scores for the
redesigned bar-coder dialog and the existing bar-coder
action/configuration dialog of 4.04 and 3.24,
respectively. A one-sided Wilcoxon Mann-Whitney test
showed satisfaction ratings to be significantly higher for
the redesigned bar coder dialog (p=0.0397). The
expert biochemists commented that the new interface
provided for graphic-oriented control, displayed the
micro-plate barcode position in a clearer manner,
presented less unnecessary information, offered
“wizard”-like popups, and was generally easy to
understand and more intuitive. The participants said
that the existing software control mechanisms were not
state-of-the-art (for example, no popups) and that the
interface was not as interactive as the new prototype.
The main disadvantage of the prototype that the
domain experts noted was that the graphical depiction
of the micro-plate was not realistic enough (Kaber et
al., 2006). Based on these data, we inferred that the
design of the new prototype dialog was an
improvement over the existing dialog from a user
satisfaction perspective and that the CTA-based
approach to interface design guideline formulation and
prototype development was effective.

Table 2. Performance times for prototype and SAMI®
bar coders (in seconds).

SAMI® Bar
Coder Interface

New Bar Coder
Interface Task

Mean SD Mean SD

Select Side 3.6 1.8 9.9 13.9
Select Label 3.8 2.4 4.5 2.7
Enter Content 12.9 6.1 9.8 11.3
Whole scenario 24.8 10.4 24.3 27.5

Note: No significant differences, p>0.05.

With respect to the second study, Table 3 presents the
subtask performance times for the new prototype and
existing method editors for the expert biochemists at
CELISCA. In general, the new interface appeared to
allow for quicker task performance. A one-sided
Wilcoxon Mann-Whitney test revealed assay
development to be significantly shorter using the new
interface (p=0.004), but there was no evidence of a
difference in bar-coder configuration and total
development times between the two interfaces. The
incubator configuration tasks were not functionally
comparable, and therefore, statistical analyses were
not considered valid.

Table 3. Performance times for prototype and SAMI®
method editor (in seconds).

SAMI®
Interface New Interface Task

Mean SD Mean SD

Bar coder
configuration

34.2 15.3 40.1 41.7

Incubator
configuration

13.2 8.4 29.4 29.1

Assay
development

254.2 72.9 46.7* 59.7

Whole scenario 373.5 116.7 236.2 274.8

* Significant difference, p<0.05.

Novices to the two interfaces (metaphor-based
interface users at CELISCA and SAMI® users at NCSU)
were compared with respect to the number of errors
committed during the HTS method programming
scenarios. The users evaluating the new prototype
made one (1) error of commission (taking an incorrect
step) and no errors of omission (failing to take the

 205

correct step). Users evaluating the existing method
editor made 16 commission errors and 11 omission
errors. Although users made more errors using the
existing interface than when using the new interface,
since the two operating scenarios were not functionally
identical across all steps, it is not possible to make
statistical comparison of these results.

CELISCA biochemist evaluations of the new prototype,
in terms of user satisfaction, were higher than the
student evaluations of the SAMI® interface. The
average user responses to the SUS questionnaire for
the SAMI® interface and the new metaphor-based
interface were 3.06 and 3.92, respectively. A one-sided
Wilcoxon Mann-Whitney test confirms that satisfaction
ratings were significantly higher for the new prototype
(p=0.0476). (It is important to note here that
participants at CELISCA also evaluated the existing
SAMI® interface, and gave it an average score of 4.14.
Their SAMI® and new prototype scores were not
significantly different. However, it is difficult to make
any inferences based on these results, since CELISCA
evaluators represented novices with respect to the new
prototype, but were highly experienced with the SAMI®
interface.)

The five evaluators at CELISCA indicated the main
advantage of the new metaphor-based prototype was a
single, comprehensive interface for assay development.
They were not required to make use of several software
packages, as with the SAMI® application, to develop an
assay from start to finish. The experts also felt that the
metaphor-based interface was easy to use, but was too
text-oriented. Based on these results, we inferred that
the new prototype design was superior to the existing
method editor from a usability perspective and that our

use of the Neale and Carroll (1997) metaphor-based
approach to the redesign of the HTS control software
was generally effective.

Discussion and Conclusions
Three usability goals were identified for our metaphor-
based redesign of the HTS method editor interface:
efficiency in task completion, error prevention, and user
satisfaction. The goal of improved efficiency can be
influenced by the development of recognizable system
components (for example, interactive components) and
the match of the system components to analogous
processes in the real world (for example, NLP).

Furthermore, the structuring of the different windows
and automatic content updating (around a core
structure within the metaphor-based redesign) assist
the user in linking the interactive components within
the interface to each other and to the cookbook
metaphor itself. The insignificant results of the usability
evaluation of the bar-coder dialogs revealed that the
experts can adapt quickly to the new interface to
achieve performance comparable to the use of the
existing software with training. The large difference in
assay development times for the two method editor
interfaces was due to the differences in the interaction
provided by the metaphor.

The goal of increased effectiveness can be linked to the
development of system components that support both
novice and expert user understanding of tasks (for
example, the process flow chart). The usability
evaluation indicated that novice users made more
errors using the existing HTS method editor interface
than when using the metaphor-based interface. This
represents a reduction in all errors, as any uncorrected

 206

errors in the assay development will lead to later
performance problems.

Finally, the goal of user satisfaction can be linked to the
use of feedback and success measures (for example,
task completion). The usability evaluation indicated
that novices found the metaphor-based interface to
better support their completion of the HTS task.

In general, these results demonstrate the effectiveness
of Neale and Carroll’s (1997) metaphor-based approach
to developing usable interfaces in a very unique and
complex domain, that is, biological compound screening
for drug development. Though it is possible that other
factors, such as the novelty of the design, could
account for the greater user satisfaction with the
metaphor-based interface, it is unlikely that such
factors influenced the effectiveness of this interface, as
evidenced by the smaller number of errors committed.

We did find some steps in Neale and Carroll’s (1997)
approach to be more useful than others. For example,
those steps that deal with mismatch handling, in some
cases, may be less relevant. That is, a metaphor may
be robust enough such that no significant mismatches
are apparent. Furthermore, if there are metaphor
mismatches, it may be difficult to translate Neale and
Carroll’s strategies (for example, teaching metaphor
modification rules, encouraging exploration of system
features, and so on) into structured recommendations
for managing them. However, Hamilton (2000) cautions
against ignoring mismatches in interface design,
claiming that users can experience a degree of
cognitive dissonance if they are not handled properly.

This study expanded on the methodology proposed by
Neale and Carroll (1997) by integrating the use of
formalized CTA methods to guide the novel metaphor-
based design with the purpose of enhancing
supervisory control interfaces in life sciences
automation.

The combination of AH modeling and GDTA with the
Neale and Carroll approach proved to be effective in
identifying the cookbook metaphor and the
development of usable interfaces for the target domain,
as demonstrated through the achievement of the
usability goals. Related to this, several guidelines have
been published in the attempt to provide designers with
different approaches to applying metaphors to interface
design (e.g. Alty et al., 2000; Carroll & Mack, 1985).
Although none of these guidelines explicitly calls for the
use of CTA methods, some do require a functional
description of the system, as can be achieved through
AH models.

Several caveats are important to discuss with respect
to this study. First, we used a remote usability
evaluation method (Dumas, 2003) to assess
performance with the metaphor-based prototype. We
provided participants at CELISCA with detailed
instructions for accessing the new prototype (online)
and evaluating its usability, but we were not physically
present in Germany during the evaluations to directly
observe biochemist interface behaviors. However, this
method may have produced conservative results
because we did not provide real-time assistance or
explain design decisions to the evaluators, which might
have inflated satisfaction ratings, for example. Beyond
this, remote usability evaluation can be considered
similar to real-life situations, in which novice users try

 207

out new software applications alone and learn how to
use them by trial and error.

Second, it would have been helpful to have a large
group of domain experts, who are familiar with HTS
(but not with SAMI®), evaluate both interfaces. This
would have allowed for a more direct comparison of
error results with the method editors. The graduate
students at NCSU who evaluated the SAMI® only had
some familiarity with life sciences automation, while the
experts at CELISCA may have been influenced in
usability ratings and performance by their prior
knowledge of the SAMI® software. Relevant to this, it
is difficult to recruit potential participants – HTS
biologists, chemists and process engineers – for such
experiments, since this expert population is very small.

Finally, the two participant groups who evaluated the
method editors represented novices. As a result,
individual differences may have played a large role in
our outcomes, such as the number of errors committed.
An alternative approach to the usability evaluation
could involve training subjects to a predetermined level
of proficiency with the software and prototype before
assessing their performance.

In the future, it would be interesting to develop a fully
functional prototype of the metaphor-based method
editor interface and to carry out a more comprehensive
evaluation, as described above, with a larger
participant population to fully understand any errors
that could result from the metaphor-based interface
design.

Other usability evaluation methods could be used as
well, such as verbal protocols (Wiedenbeck, Lampert &

Scholtz, 1989), to allow for detailed user behavior and
error analysis. Another evaluation method that could be
considered for future work is cognitive modeling
techniques, such as GOMS (goals, operators, methods,
selection rules; Card, Moran, & Newell, 1983). GOMS
models can predict time-to-task completion (Card et
al., 1983), time to learn how to perform a task (Kieras,
1999), and task complexity, and can thus replace user
testing at early interface design stages.

One of the issues related to interface design for
cognitive tasks, such as HTS method programming, is
that software manufacturers develop applications that
may not “speak the users’ language” (Nielsen, 1993).
Human factors experts, who have studied operator
information needs through CTA methods and have
detailed knowledge of usability evaluation methods, can
act as mediators between biopharmacologists and
software developers to better specify interface
requirements. By using human-computer interaction
methods to explicitly represent biopharmacologist
needs via prototypes, manufacturers may be able to
more effectively establish software design requirements
and specifications.

Last, one ancillary result of this work is the
development of recommendations for redesigning
actual cookbooks. The combination of a method flow
chart with the mock-NLP assay scratch pad in the
metaphor-based interface suggested that the
development of more flow charts of cooking processes
in cookbooks might be helpful to chefs. Furthermore,
not all cookbooks include lists of tools and ingredients
that support work organization prior to, and while,
cooking. Adding these components to cookbook recipes
may increase their usability.

 208

Practitioner’s Take Away

 Metaphors can be a powerful tool for guiding interface
design in specific domains. They enable users to map
knowledge from a familiar source domain to an
unfamiliar target domain, thus they are particularly
useful for novices.

 The combination of formalized CTA methods with
existing frameworks for developing metaphor-based
interfaces can be helpful in developing, evaluating, and
refining an appropriate metaphor.

 Mismatches between software environments and the
real-world analog defining a design metaphor can be
effectively addressed by using composite metaphors,
including object and process references.

 Metaphor-based interfaces can significantly promote
system usability, in particular effectiveness, efficiency,
and user satisfaction in complex systems.

Acknowledgments
A National Science Foundation (NSF) Information
Technology Research Grant (no. 046852) supported
this research. Ephraim Glinert was the technical
monitor for the NSF. The views and opinions expressed
in this paper are those of the authors and do not
necessarily reflect the views of the NSF. We thank the
University of Rostock and CELISCA for providing us with
access to high-throughput biological screening systems
and supporting the research through allocation of
biopharmacologist and process engineer time to the
effort.

References
Alty, J.L., Knott, R.P., Anderson, B. & Smyth, M. (2000)

A framework for engineering metaphor at the user
interface. Interacting with Computers, 13, pp. 301-
322.

Anderson, B., Smyth, M., Knott, R.P., Bergan, M.,
Bergan, J., & Alty, J.L. (1994) Minimizing conceptual
baggage: Making choices about metaphor. In People
and Computers IX, Proceedings of HCI '94 (pp. 179-
194). Huddersfield, UK: Cambridge University Press.

Brooke, J. (1996). SUS: A ‘quick and dirty’ usability
scale. In Jordan, P. W., Thomas, B., Weerdmeester,
B. A., & McClelland, I. L. (Eds.), Usability Evaluation
In Industry, pp. 189-194. London, UK: Taylor &
Francis.

Card, S., Moran, T., & Newell, A. (1983) The
Psychology of Human-Computer Interaction. Hillsdale,
New Jersey: Erlbaum.

Carroll, J.M., & Mack, R.L. (1985) Metaphor, computing
systems and active learning. International Journal of
Man-Machine Studies, 22(1), pp. 39-57.

Dale, R., Moisl, H., & Somers, H. (Eds.) (2000)
Handbook of Natural Language Processing. New York:
Marcel Dekker.

Dumas, J. S. (2003) User-based evaluations. In J.
Jacko and A. Sears (Eds.), The Human-Computer
Interaction Handbook (pp. 1094-1115). Mahwah, NJ:
Erlbaum.

Dutton, R.T., Foster, J.C., & Jack, M.A. (1999) Please
mind the doors – Do interface metaphors improve the
usability of voice response services? BT Technology
Journal, 17(1), pp. 172-177.

Endsley, M. R. (1993). A survey of SA requirements in
air-to-air combat fighters. International Journal of
Aviation Psychology, 3(2), pp. 157-168.

 209

Endsley, M. R., Bolstad, C. A., Jones, D. G., & Riley, J.
M. (2003) Situation awareness oriented design: From
user's cognitive requirements to creating effective
supporting technologies. In Proceedings of the 47th
Annual Meeting of the Human Factors & Ergonomics
Society (pp. 268-272). Santa Monica, CA: Human
Factors & Ergonomics Society.

Entzian, K., Allwardt, A., Holzmüller-Laue, S.,
Junginger, S., Roddelkopf, T., Stoll, N., & Thurow, K.
(2005) Automationslösungen für biologische und
chemische Screeningverfahren. Proceedings GMA-
Kongress "Automation als Interdisziplinäre
Herausforderung", Baden-Baden, June 7-8, pp. 235-
242.

Erickson, T.D. (1990) Working with interface
metaphors. In B. Laurel (Ed.), The Art of Human-
Computer Interface Design (pp. 65-73). Reading, MA:
Addison-Wesley Publishing Company, Inc.

Hamilton, A. (2000) Interface metaphors and logical
analogues: A question of terminology. Journal of the
American Society for Information Science, 51(2), pp.
111-122.

Harper, B., Slaughter, L., & Norman, K. (1997)
Questionnaire administration via the WWW: A
validation & reliability study for a user satisfaction
questionnaire. In Proceedings of WebNet 97:
International Conference on the WWW, Internet, and
Intranet, Toronto, ON, Canada.

Kaber, D.B., Segall, N., Green, R.S., Entzian, K., &
Junginger, S. (2006) Using multiple cognitive task
analysis methods for supervisory control interface
design in high-throughput biological screening
processes. International Journal of Cognition,
Technology & Work (Available online: DOI
10.1007/s10111-006-0029-9).

Kieras, D. (1999) A guide to GOMS model usability
evaluation using GOMSL and GLEAN3. University of
Michigan, Ann Arbor, Michigan.

Kuhn, W., & Blumenthal, B. (1996) Spatialization:
Spatial metaphors for user interfaces. In A.U. Frank
(Ed.), Geinfo Series, 8, Vienna, Austria: Technical
University Vienna (Tutorial notes from the ACM
Conference on Human Factors in Computer Systems
(CHI ’96).

Neale, D.C., & Carroll, J.M. (1997). The role of
metaphors in user interface design. In M. Helander,
T.K. Landauer, and P. Prabhu (Eds.), Handbook of
Human-Computer Interaction (pp. 441-462).
Amsterdam: Elsevier Science.

Nielsen J (1993) Usability Engineering. Academic Press,
Boston.

Norman, D.A. (1995) The psychopathology of everyday
things. In R. M. Baeker, Grudin, J., Buxton, W. A. S.,
and Greenberg, S. (Eds.), Readings in Human-
Computer Interaction: Toward the Year 2000 (pp. 5-
22). San Francisco, CA: Morgan Kaufmann Publishers.

Rasmussen, J. (1985) The role of hierarchical
knowledge representation in decision-making and
system management. IEEE Transactions on Systems
Man and Cybernetics, 15, pp. 234-243.

Schappert, A., Sommerlad, P., & Pree, W. (1995)
Automated Support for Software Development with
Frameworks. Symposium on Software Reusability,
SSR ’95, ACM Software Engineering Notes, Seattle,
WA: Association of Computing Machinery.

Thurow, K., Entzian, K., & Eberlein, G. (2004)
Toxicological and pharmacological evaluation of new
drug candidates by in vitro robotic high throughput
cell assays. Journal of the Association for Laboratory
Automation, 9(3), pp. 159-162.

 210

Usher, J.M., Kaber, D.B. (2000) Establishing
information requirements for supervisory controllers
in a flexible manufacturing system using goal-directed
task analysis. Human Factors & Ergonomics in
Manufacturing, 10(4), pp. 431-452.

Vicente, K.J. (1999) Wanted: Psychologically relevant,
device- and event-independent work analysis
techniques. Interacting with Computers, 11, pp. 237-
254.

Wiedenbeck, S., Lampert, R., & Scholtz, J. (1989)
Using protocol analysis to study the user interface.
Bulletin of the American Society for Information
Science, 15(5), pp. 25-26.

David B. Kaber is a professor
in the Edward P. Fitts
Department of Industrial &
Systems Engineering at North
Carolina State University and a
visiting professor at the Center
for Life Sciences Automation of
the University of Rostock. His
research interests include
human-automation interaction,
interface design for complex

systems and analysis of situation awareness. He
received his Ph.D. in industrial engineering from Texas
Tech University in 1996.

Noa Segall is a research
associate in the Department
of Anesthesiology and the
Human Simulation and Patient
Safety Center at Duke
University Medical Center. She
received her Ph.D. in
Industrial & Systems

Engineering at North Carolina State University in 2006.
Her research interests include human factors in medical
systems, human-computer interaction, and human
factors in automation design.

Rebecca S. Green is a
doctoral candidate in the
Department of Psychology at
North Carolina State
University. She received a
B.S. in biomedical engineering
at the University of Pittsburgh
and an M.A. in experimental
psychology at East Carolina

University. Her research interests include interface
design in computer-based instruction and human-
automation interaction in medicine.

