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 Abstract 

This paper describes work on developing usable 
interfaces for creating and editing methods for high-
throughput screening of chemical and biological 
compounds in the domain of life sciences automation. A 
modified approach to metaphor-based interface design 
was used as a framework for developing a screening 
method editor prototype analogous to the presentation 
of a recipe in a cookbook. The prototype was compared 
to an existing screening method editor application in 
terms of effectiveness, efficiency, and satisfaction of 
novice users and was found to be superior. 
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Introduction 
System designers have identified various ways to deal 
with the increasing complexity of user interfaces. One 
of these is the metaphor-based approach where 
properties of an interface are designed to take on the 
appearance and behavior of real-world devices or 
objects in an environment that is familiar to system 
users. Interface metaphors enable users to map 
knowledge from a familiar source domain to an 
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unfamiliar target domain, allowing them to use prior 
experience to comprehend and navigate in novel 
situations (Neale & Carroll, 1997). Thus, metaphors are 
viewed as an important tool for facilitating learning and 
novice use of interfaces, since it is easier to construct a 
new concept from more established concepts than to 
develop understanding of an unknown abstract idea 
(Carroll & Mack, 1985). Other research has indicated 
that metaphor-based design may enhance interface 
usability (Kuhn & Blumenthal, 1996) and user 
satisfaction (e.g., Dutton, Foster, & Jack, 1999). 
 
Target Domain 
Contemporary high-throughput screening (HTS) 
processes involve chemical-based assays of organic and 
inorganic compounds for effects on human cellular 
functions, or enzyme reactions that are common in cells 
(Entzian, Allwardt, Holzmüller-Laue et al., 2005). 
Among the uses of HTS is the testing of compounds 
that may have the potential to serve as bases for drug 
derivatives for use in future medications to treat 
cancer, viruses, and more.  
 
At the University of Rostock (Germany) Center for Life 
Sciences Automation (CELISCA), marine compounds 
undergo enzyme-based (for example, Trypsin) testing 
to identify compounds that might be useful for such 
drug derivative development. Testing the compounds 
involves several steps, including pipetting liquids 
(enzyme substrates, test compound extracts and other 
reagents) at different quantities and concentrations into 
micro (culture)- plates with many sample wells; 
incubating the micro-plates to elicit enzymatic reactions 
similar to those that would occur in the human body; 
and analyzing the reactions using optical 
measurements. 

Complete automation of enzyme-based screening (such 
as a Trypsin test) includes the integration of an 
optimized robot for chemical analysis (ORCA) with 
analytical measurement devices on a process line (see 
Figure 1). The ORCA, which is programmed, controlled, 
and monitored from a central process control system 
(PCS), transports micro-plates to and from the various 
workstations on the screening line. The automated 
devices on the line include a bar coder for labeling and 
tracking micro-plates in which compounds are tested; 
an automated pipetting (liquid transfer) robot for filling 
micro-plates with liquids; an incubator for bringing the 
temperature of reactions in the micro-plates to human 
body temperature; and an automated micro-plate 
reader for analyzing the enzyme activity in each well of 
a plate using luminance tests of light reflected off 
samples. The reaction of various compounds with the 
enzyme causes biological products to be generated in 
wells that turn different colors. Target wavelengths (or 
reaction products) are identified by biochemists in 
advance of the screening process. 
 
With the advent of highly automated analytical 
measurement devices that can transport and chemically 
evaluate thousands of biological samples on a daily 
basis, the role of human operators in HTS has 
dramatically shifted. Time-consuming manual material 
handling tasks such as pipetting biological compounds 
into micro-plates and mixing compounds with reagents, 
which were traditionally performed manually by 
operators, are now fully automated with robotics. The 
human’s task has become that of supervisory control – 
planning, managing, and analyzing the results of highly 
automated screening lines. 
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Specialized biological screening 
tests, such as the Trypsin 
screening test, are developed by 
scientists and published in the 
biotechnology literature (Thurow, 
Entzian, & Eberlein, 2004). 
“Bench-top” versions describe how 
to manually perform a particular 
screening assay. 
 
Biopharmacologists at CELISCA 
adapt the manual bench-top 
protocol of the screening tests to 
automated HTS lines (Thurow et 
al., 2004). This process involves 
steps, such as identifying the 
appropriate micro-plate to be used 
in the automated assay, 
determining the mixture of liquids 
within each micro-plate, selecting 

and programming the automated devices that will be 
used to perform the assay, planning the pipetting 
processes (for example, which pipetting tips and 
reservoirs will be used), and establishing an optimal 
sequence of assay steps. 
 
After developing the automated screening test protocol, 
operators use a computer-based screening “method 
editor” to program the specific methods that will be 
executed by devices and the sequence. For example, 
Beckman-Coulter currently publishes a software 
application called SAMI® (SagianTM Automated Method 
Development Interface) that allows a biochemist to 
develop graphical models (resembling flow charts) of 
screening tests to be conducted on a HTS line. 
Screening methods are constructed at the user 

interface by dragging icons representing available HTS 
devices (which will be used in the assay) to a central 
“scratch pad” and connecting them with arrows to 
define transportation of micro-plates among the device 
workstations by the ORCA (see Figure 2). Icons 
representing different types of plates are also available 
for further specifying a method. Operators then 
program pipetting robots and plate readers, which have 
their own proprietary control software. These devices 
are then integrated in the screening process with the 
method editor and the PCS, including an executive 
software controller.  
 
The screening method editor includes standard 
Windows action/configuration dialogs for all devices on 
the HTS line, which operators use to set device 
parameters and to send data to the pipetting robot and 
plate reader software modules. For biopharmacologists, 
who may prefer to have samples (or the micro-plates 
that contain them), rather than HTS devices, at the 
“center” of the method-development process, this 
approach to programming the system may be less 
intuitive. 
 
A typical HTS experiment poses a high cognitive 
workload for supervisors, who must keep track of the 
timing of process steps, whether robot motions are 
accurate, and whether chemical reactions are occurring 
safely. Errors can occur at many different phases of the 
screening process. For example, robot material 
handling errors can be caused by initial incorrect 
placement of labware by operators. Chemical reactions 
may not progress as planned because of operator 
errors in programming pipetting operations or wear of 
device components (for example, cables and pumps in 
the pipetting robot), leading to delays in reactions or 

Figure 1. HTS screening line 
at CELISCA with labels of 
automated devices. (Note: 
The Biomek FX is a 
commercially available 
pipetting robot. Plate readers 
are used for ultraviolet (UV) 
and fluorescence and 
luminance testing of samples 
in plates. “Hotels” are 
temporary storage areas for 
micro-plates. The “print and 
apply” device is a barcoding 
machine.) 
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the need to scrap an entire experiment. This can be 
very costly to the test facility because many of the 
organisms being investigated are extremely rare and 
extracts are expensive to develop. 

 
Consequently, operators may 
need to periodically intervene 
in the master robot control to 
prevent such errors and to 
keep a line from “crashing”. 
The process control interface 
must provide the capability 
for both off-line and near 
real-time, closed-loop 
programming of process 
events based on the progress 
of an experiment. 
 
Cognitive Task Analysis 
To address the potential for 
costly errors, we previously 

evaluated the HTS process with the goal of identifying 
functional limitations of automated devices and 
usability problems with existing software interfaces for 
programming, executing, and analyzing screening 
experiments (Kaber, Segall, Green, et al., 2006). To 
this end, two cognitive task analysis (CTA) methods 
were employed, including abstraction hierarchy (AH) 
modeling and goal-directed task analysis (GDTA). An 
AH model is the representation of a work system along 
multiple levels of abstraction (Rasmussen, 1985), 
ranging from physical component properties to system 
purposes, which are linked in the model based on 
means-end relationships. AH models have been used 
for systems analysis and design and as a framework for 
describing control tasks necessary to maintain 

adequate system performance (Rasmussen, 1985). We 
developed AH models for all automated devices 
integrated in the HTS line at CELISCA, including the 
automated pipetting robot (Biomek2000®), incubator, 
ORCA (material transport robot), and automated micro-
plate reader.  
 
For example, in the AH model of the bar coder, at the 
highest level of abstraction, the purpose is specified as 
assigning IDs to plates and recognizing plate labels 
during processing. One of the generic functions to this 
goal is the “process of printing a barcode”. This 
includes generalized functions of label feeding and 
applying thermal ink. These functions are supported by 
components, including the printer and label paper 
feeder.  
 
A separate AH model was developed to represent the 
software or automation used to control the mechanisms 
of the bar coder. One of the general functions in this 
model is “printing control,” including subfunctions of 
“selecting a barcode type,” “defining the content of the 
code,” and “storing the code.” These functions are 
supported by different interface features, including 
dialogs presenting label-type options for selection and 
input windows for manual string entry or selection of 
files containing lists of defined plate IDs. 
 
GDTA is a methodology that focuses on identifying 
operator critical decisions and situation awareness (SA) 
requirements relevant to performing complex systems 
control (Endsley, 1993). GDTA uses a diagram format 
similar to hierarchical task analysis, but concentrates 
on the organization of an operator’s goal set and not on 
low-level operations with system interfaces. The 
outcomes of GDTA include perceptual requirements for 

Figure 2. SAMI® method editor 
interface by Beckman-Coulter. 
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task performance and operator needs in terms of 
system-state comprehension and projection. The 
results can be used as a basis for display design, 
training program development, and operator selection 
(Usher & Kaber, 2000).  
 
We developed a GDTA describing biopharmacologist 
goals, tasks, decisions, and information requirements 
relevant to supervisory control of the HTS line. The 
complete GDTA included 25 high-level goals, 20 
subgoals, and a total of 88 tasks to these subgoals. On 
average, there were 4.4 tasks to each subgoal and 2.2 
critical decisions per task. An analysis of the SA 
requirements associated with the various operator 
decisions revealed a total of 228 unique pieces of task 
information.  
 
For example, one of the subgoals in the GDTA deals 
with the application and reading of barcode labels 
during the HTS process. This goal involves two tasks: 
integrating the bar coder into the process (in the PCS 
software) and determining how it will be used during 
the assay. The operator must make two decisions when 
integrating the bar coder: what information will be 
included in the label and where the label will be applied 
to a micro-plate. The information required to address 
these decisions is the code that will be used on the 
label. To achieve the second task, that of determining 
the functions of the bar coder, the operator must 
decide whether a new barcode needs to be applied to 
micro-plates or whether an existing barcode is to be 
read. In addressing this decision, the operator needs to 
know whether a barcode is already present on the 
micro-plates (from the manufacturer or client) and 
what step is to follow bar coding in the assay process.  

To facilitate data collection (using the micro-plate 
reader), for example, it is first necessary to read the 
content of the barcode label. These operator tasks, 
decisions, and information requirements are captured in 
hierarchical outline form in the GDTA. 
 
The combination of AH models, describing screening 
line devices and automation, with the results of the 
GDTA on biopharmacologist performance of HTS 
operations, allowed us to determine whether the task 
and functional requirements of operators were being 
met by existing system elements. The generalized 
functions of robotic devices, identified in the AH 
models, were related to the functions that operators 
required to achieve screening task goals, as captured in 
the GDTA. Furthermore, operator information 
requirements for task decisions, as identified through 
the GDTA, were compared with specification of current 
interface action sequences and display content based 
on the AH models to identify potential usability issues 
with the existing software interfaces (for example, 
SAMI®). That is, we were able to determine whether 
particular screening method editor displays and action 
sequences led to the information operators needed for 
certain process decisions. In our previous work, we 
made direct comparison of the GDTA results and AH 
models to formulate interface design and automation 
functionality recommendations for enhancing the 
existing software applications used in the HTS process 
at CELISCA (Kaber et al., 2006).  
 
Design recommendations were formulated for all goals 
in the GDTA that pertained to the use of HTS software. 
The recommendations addressed usability goals based 
on Nielsen’s (1993) and Norman’s (1995) work, 
including providing a good match between the system 
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and the real world, thereby promoting operator 
recognition rather than recall, enhancing the visibility of 
system status, preventing errors, and developing a 
parsimonious interface design. These recommendations 
ultimately were reflected in a new prototype of a 
control dialog as part of the existing screening method 
editor software. (We describe this prototype later in the 
paper, along with a metaphor-based revision of the 
primary method editor interface and usability 
evaluations.) 
 
The objective of this research was to develop an 
interface design metaphor that could be used as a 
framework for implementing the specific design 
recommendations resulting from the previous CTAs to 
create usable and effective HTS supervisory control and 
method editing interfaces. Although the 
recommendations for automated device control dialogs 
and the existing HTS method editing software were 
useful, we needed an overarching framework in which 
to organize the recommendations for coherent design 
revisions. We conducted two usability evaluations to 
assess whether application of the metaphor and the 
specific design modifications led to actual 
improvements in usability and effectiveness for system 
operators. In general, the evaluations served to 
establish whether the new interface designs were 
suitable for the purpose of HTS device control and 
assay method editing, as well as the utility of the 
metaphor for this domain. 
 
The Cookbook Metaphor 
A cookbook typically contains multiple recipes, each 
with its own set of task components, such as the 
preparation procedure, the required ingredients along 
with their quantities, the equipment needed to prepare 

the dish, and estimates of how much time it will take to 
prepare the dish based on the number of servings. 
Similarly, the bench-top protocols used in biological 
screening processes, which describe how to manually 
perform a particular screening test (assay), identify 
required reagents along with their quantities, the 
equipment needed to perform the assay, and a detailed 
preparation procedure. When comparing a cookbook 
and a bench-top protocol, the chemical and biological 
reagents in the protocol become the recipe’s 
ingredients, the concentrations and amounts of the 
reagents are the ingredient amounts, the automated 
devices become the cooking equipment, and the 
protocol method becomes the “dish” preparation 
procedures. This strong similarity in the structure of the 
two concepts, cooking and bench-top assaying, led to 
our development and use of a cookbook metaphor for 
redesigning the interfaces of the method editing 
software previously created for the HTS domain. 
 
Cookbook metaphors have been used in the domain of 
software development for organizing help utilities 
according to the overall layout of a cookbook. For 
example, Schappert, Sommerland, and Pree (1995) 
proposed the use of an “active cookbook” tool that 
provides semi-automated assistance to guide 
programmers in developing new software. “Recipes” in 
this cookbook describe (in an informal way) how to 
code certain generic application tasks. They contain a 
purpose, procedure, and source code examples. The 
“recipes” serve as a basis for generating source code 
based on programmer decisions and they help to 
structure the code by requiring that certain steps in the 
procedure be carried out before others. In Schappert et 
al.’s (1995) work, the cookbook metaphor is applied at 
the book level; that is, the active cookbook has 
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components or features that represent those of a food 
cookbook. However, no prior work appears to have 
used the style of presentation of recipes in a cookbook 
as a metaphor specifically for interface design.  
 
As a chef normally writes the cooking procedure for a 
recipe in natural language, we also wanted to prototype 
the capability for biochemists to develop automated 
assay methods using natural language processing 
(NLP). Previous use of the cookbook metaphor in 
software development has not integrated use of NLP for 
user input to automated assistance applications. The 
metaphor-based method editor interface design 
presented below incorporates a mock-NLP capability for 
assay programming.  
 
In an actual application, natural language 
understanding systems must convert samples of human 
language into more formal representations that a 
computer program can manipulate. Some of the 
problems that make NLP difficult to implement, 
including text segmentation, word sense 
disambiguation, syntactic ambiguity, and speech acts, 
restrict NLP integration in intelligent interfaces (Dale, 
Moisl & Somers, 2000). However, since only a finite 
vocabulary is required to develop automated assay 
procedures from bench-top protocols, we expected this 
limitation to have little effect on an actual NLP-based 
HTS interface, and therefore, we prototyped this 
capability in our redesigned screening method editor 
interface. Other interface features were also 
incorporated in the method editor interface to capture 
the cookbook metaphor, such as lists of tools and 
reagents to be used in the HTS process being 
programmed. These are discussed in more detail below. 
 

Usability Goals and Metaphor-Based 
Interface Design 
Based on a review of human-computer interaction 
design literature, we adapted Neale and Carroll’s 
(1997) metaphor-based design methodology to 
prototype a new method editing interface for HTS assay 
development. The usability of this interface was 
compared to that of Beckman-Coulter’s SAMI® method 
editor currently in use at CELISCA. Three overall 
usability goals were identified for the new interface: (1) 
increased efficiency, that is, a shorter task completion 
time; (2) enhanced effectiveness, that is, a smaller 
number of errors; and (3) improved user satisfaction. It 
was hypothesized that the metaphor-based method 
editor prototype would be more efficient and effective 
and that users’ reaction to it would be positive. 
 
To develop a research foundation for implementing 
metaphor-based interface design, we reviewed work on 
approaches to using metaphors (e.g., Alty, Knott, 
Anderson et al., 2000; Carroll & Mack, 1985; Neale & 
Carroll, 1997). Neale and Carroll (1997) developed a 
five-step methodology, with the first stage involving 
identification of system functionality as a basis for 
mapping the system to potential source domains 
(metaphors). In the second stage, a designer is to 
generate possible metaphors, like the cookbook 
metaphor for the HTS protocol development. (We have 
already presented some information in line with these 
steps.) Neale and Carroll (1997) refer to several 
methods similar to iterative design processes, such as 
interviewing users, analyzing users’ work context, and 
empirically analyzing their semantic and procedural 
knowledge, as related to the system.  
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The next stage is to determine how user tasks and 
methods at the conceptual interface relate to 
achievement of goals and plans. The tasks, methods, 
and appearance of the metaphor are analyzed for their 
association with the goals and plans of the user and the 
elements that they may work with in reality.  
 
Stage four identifies discrepancies in the software 
domain related to the metaphor by determining when 
interface functions will lead users to perform erroneous 
actions rather than leading to new insights into the 
system domain.  
 
The final stage provides strategies for assessing and 
controlling these metaphor-interface mismatches. The 
authors indicate that designers can use composite 
metaphors, teach modification rules for elements not 
represented by the metaphor, or encourage exploration 
of the system features represented by the interface. 
(Below we talk about complementing our cookbook 
metaphor with a cooking metaphor to address some 
discrepancies between assay method editing and 
developing a cooking recipe.) 
 
We adapted Neale and Carroll’s (1997) approach by 
integrating the CTA techniques described above, as a 
basis for designing enhanced displays and controls as 
part of the HTS method editor interface. The first stage 
of Neale and Carroll’s methodology involves identifying 
the system functionality and the features a system 
must have to meet user needs. To this end, we used 
our AH models for the HTS devices and automation to 
specify current system functionality. The device models 
identified all components supporting specific functions. 
The software models identified all existing interface 
features for controlling HTS automation. The GDTA 

content was used to identify users’ needs with respect 
to the system components (for example, what type of 
information was required from device displays to 
support task performance). 
 
In stage two of the methodology, the process of 
generating possible metaphors was also based on the 
empirical results of the GDTA. Like many CTA methods, 
the GDTA involves observing operators at work and 
conducting structured interviews on task goals, 
decisions and information requirements, as Neale and 
Carroll (1997) suggested.  
 
The general procedure to HTS method programming 
and control revealed through the GDTA supported our 
identification of the cookbook as a possible metaphor 
for structuring the information content of a “bench-top” 
protocol for a biological assay. The major subgoals of 
the GDTA related to the protocol development included: 
“identify steps…,” “identify appropriate plates to use…,” 
“establish plate configuration…,” “identify devices to 
perform steps,” “identify time critical steps…,” and so 
on. These goals are all akin to the goals of a chef in 
cooking and led to the inspiration to use the cookbook 
metaphor. As we stated, when comparing a cookbook 
recipe and a bench-top protocol, for example, an 
enzyme-based test, both contain a required ingredient 
list, a list of the equipment needed to prepare the 
dish/assay, and ordered preparation procedures for the 
dish/assay.  
 
With these three components in mind, our new 
metaphor-based design of the screening method editor 
is comprised of three main windows: (1) a window for 
entering the assay procedure (deciphered by the 
system using pseudo-NLP); (2) a window containing 
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the required ingredients for the assay; and (3) a 
window containing the equipment that will be used 
throughout the assay (see Figure 3). A fourth window 
was included to provide the user with a visual 
representation (in the form of a flow chart) of the assay 
procedures applied to micro-plates according to the 
“recipe” input by the biochemist in natural language. 
Flow charts of recipe preparation procedures can be 
found in many basic cookbooks. Thus, the flow chart 
window did not represent a violation of our metaphor 
(in format). 
 
In the third stage of Neale and Carroll’s (1997) 
methodology, we assessed whether the goals and plans 
of a biochemist in HTS protocol development were 
supported by the metaphor by comparing examples of 
activities in developing a cookbook recipe with HTS 
process development (see Table 1). We identified few 
“breakdowns” of the metaphor. For example, multiple 
instances of a HTS device in a tools palette interface 
could be considered unbounded or unpredetermined in  
the method-editing environment; however, multiple 
uses of a device in the physical environment could be 
considered bounded and predetermined. Similarly, the 
specification of physical re-use of a particular utensil 
could be considered unbounded and unpredetermined 
in the development of new recipes for a cookbook but 
might be expected in the actual cooking process.  

 
Figure 3. Metaphor-based method editor prototype. 
 
Therefore, the key differences between the physical 
cookbook and the application of the cookbook metaphor 
to the method-editing interface were addressed by 
extending the metaphor to the basic process of cooking 
to encompass our design notions. 
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Table 1. Comparison of cookbook recipe components 
and HTS process elements. 

Cookbook Metaphor Prototype Feature 

Writing recipe Using NLP to author 
assay protocol 

Specifying ingredients Identifying chemical and 
biological reagents in 
“Ingredients Window” 

Identifying necessary 
cooking utensils 

Identifying automated 
devices and tools for use 
in “Tools Window” 

Ingredient amounts Concentrations and 
amounts of reagents 

Reuse of utensils Multiple instances of 
automated devices in a 
“Tools Window” palette  

Selection of mixer 
attachments for use in dish 
preparation 

Selection of barcode 
label to apply to micro-
plate; Selection of 
pipetting tool for HTS 
process 

Selection of baking dish Selection of micro-plate 

 
Related to the previous step, the fourth stage of Neale 
and Carroll’s approach involves identifying 
discrepancies in the software domain related to the 
metaphor. They recommend covering as many aspects 
of the interface design (suggested by the metaphor) as 
possible, but remind designers of the importance of 
focusing on communicating system functionality rather 
than on mimicking every aspect of the source domain. 
We found that the cookbook metaphor more accurately 
reflected the functionality in some parts of the HTS 
system than others. One example of a metaphor match 
is the use of the micro-plate incubator in a HTS 
protocol, as the device carries-out a process similar to 

using an oven for cooking food. A metaphor mismatch 
example is the barcode print and apply device, which is 
used in the HTS environment for applying and reading 
identification labels on micro-plates, as it has no direct 
analogy with a recipe in a cookbook or typical 
processes in the cooking domain. That is, in cooking, 
one does not typically use a device to label materials 
with barcodes prior to preparing a dish: materials in 
cooking processes are typically uniquely recognizable 
by a chef, as compared to an ORCA handling hundreds 
of identical micro-plates.  
 
This mismatch between the cookbook metaphor and 
the HTS environment was addressed by extending the 
concept of cooking utensils to appliances. In this case, 
the barcode device was implemented as a configurable 
cooking appliance. Therefore, the cookbook metaphor, 
represented by the interface, more closely resembles 
both the cookbook recipe and the cooking process.  
 
Another mismatch example is the use of different 
colored hyperlinks in the assay protocol to indicate 
terminology or system references for which the editor 
requires further detail from a user. A “traffic light” 
metaphor was used for this feature (see Figure 3). 
These interface properties are also not analogous to the 
cookbook metaphor. 
 
Both the third and fourth stages of the Neale and 
Carroll (1997) method can be facilitated through 
scenario-based analysis of interface prototypes. 
Consequently, we developed a HTS scenario that 
required interaction with prototype features including 
those for the identification of plates/sources, liquid 
transfer, heating, and returning micro-plates to home 
positions. To further ensure that users could perform 
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the tasks and methods with the interface by thinking 
about the metaphor and relating features to their goals, 
evaluations of the prototypes were conducted with 
subject matter experts based on the defined scenario 
(see below). In this manner, we also verified that the 
prototype supported user tasks as revealed through the 
GDTA. 
 
The final stage of Neale and Carroll’s (1997) approach 
is to provide strategies for assessing and controlling 
metaphor-interface mismatches. We proposed to 
develop and teach biochemists rules for elements not 
directly represented by the metaphor, as in the case of 
the bar-coder device. Another method for managing 
mismatches is the use of composite metaphors, which 
can create a match with one metaphor where a 
mismatch occurs in another (Neale & Carroll, 1997).  
 
Our use of the cooking process and traffic light 
metaphors were examples of this. Finally, mismatches 
may be handled by designing the interface such that it 
will encourage exploration of system features without 
penalty (Carroll & Mack, 1985). The colored hyperlinks 
and flow chart support such investigation of the new 
method editor prototype by allowing users to interact 
with interface elements and to learn about their 
function without affecting previous work. 
 
This adaptation of Neale and Carroll’s (1997) 
methodology resulted in an interface design supporting 
a process- (or micro-plate) oriented approach to HTS 
method programming. The metaphor-based prototype 
was expected to be more intuitive and easier for 
biochemists to use than the existing method editing 
application currently installed at CELISCA, which 
supports a device-oriented programming approach. 

The new process-oriented method editor interface 
requires a user to initially describe an assay procedure, 
rather than identify the devices used to conduct 
screening. The metaphor-based interface includes a 
menu bar and toolbar, an assay name field and four 
windows, specifically the Assay Procedure Window, 
Process Flow Chart Window, Tools Window, and 
Ingredients Window (Figure 3).  
 
To program a new assay, the user types a sequence of 
instructions in natural language (for example, 
“...Remove 1 family of 96-well flat test micro-plates 
from incubator and label using the bar coder...”) in the 
Assay Procedure window. As text is entered, a flow 
chart is automatically created in the Process Flow Chart 
window (based on the NLP technology), documenting 
the different steps that a micro-plate is to pass 
through. The numbers of devices and amounts of 
materials to be used in the process that are 
recognizable by the system are also updated in the 
Tools and Ingredients windows of the interface, based 
on the assay description entered by the user. Finally, 
certain keywords in the description (recognizable by the 
system) that represent objects, such as devices, 
equipment, or materials, become hyperlinks.  
 
Red hyperlinks represent objects for which the system 
needs further configuration or specification information 
to operate (for example, what type of label should the 
bar coder apply?). Yellow hyperlinks represent partially 
defined objects for which the system needs some 
additional information, but even if this information is 
not provided, the method will run using its default 
values. For example, if the user requests deep-well 
micro-plates, the default micro-plate will be used, but 
the number of wells in the micro-plate can also be 
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specified. Green hyperlinks represent objects for which 
the system has all the necessary information to 
function – they are fully defined. Clicking on any 
hyperlink (in the Assay Procedure, Process Flow Chart, 
or Tools Windows) will open a configuration dialog for 
the selected device or material. After the equipment or 
material is configured, the associated hyperlink 
becomes green. 
 
Usability Evaluation 
Two usability evaluations 
were conducted, with the 
first focusing on the new 
bar coder 
action/configuration dialog 
(Kaber et al., 2006) and 
the second dealing with the 
prototype method editor 
interface.  
 
We reviewed various 
usability evaluation 
methods for validating 
our approach to the 
enhancement of the 
existing HTS control 
interface. We considered 
survey methods, as Neale 

and Carroll (1997) advised using surveys 
to evaluate metaphor-based interface 
design. Furthermore, Anderson, Smyth, 
Knott et al. (1994) used a questionnaire to evaluate a 
metaphor-based interface by requiring users to identify 
the degree of agreement of, and to make confidence 
ratings on, source and target domain pairings. This 
allowed the designers to reason about the effectiveness 

of source-target interactions and their associated 
mappings. However, this type of assessment is largely 
focused on evaluation of the metaphor and less on the 
resulting usability of the interface design based on the 
metaphor. For the purposes of our research, we 
decided to use the System Usability Scale (SUS; 
Brooke, 1996) to capture user responses pertaining to 

satisfaction with 
the new 
prototype HTS 
interfaces. This 
survey has been 
used in several 
empirical 
assessments of 
usability (see 
Brooke, 1996) 
and provides a 
basic indicator of 
user preferences 
among interface 
alternatives. We 
expected that 
such a method 
would reveal 
whether users 
preferred our 
new interface to 

the existing software 
design, as influenced 
by the match 

between the system and the selected real-world analog 
(the cookbook recipe and cooking). 
 
Erickson (1990) suggests conducting usability 
assessments by identifying user problems with existing 

Figure 4. New bar coder interface. 
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systems in the context of actual work tasks. We 
thought this approach would also be useful for 
determining whether users encountered more or fewer 
problems in simulated method programming using the 
metaphor-based prototype versus the existing 
screening process control software.  
 
Erickson (1990) also encourages the use of scenarios 
for performing similar tasks with different interface 
alternatives involving different interaction methods. We 
also applied this approach by comparing the new 
metaphor-based prototype to the existing (SAMI®) 
method editor in developing a HTS protocol. The 
scenario-based evaluation allowed us to assess if users 
of the new prototype made fewer errors than users of 
the existing interface and if they were able to complete 
the scenario in less time. 
 
Methodology 
The first usability study involved five domain experts 
comparing the new bar-coder dialog with the existing 
software. The new dialog (Figure 4) was designed 
based on the results of our AH modeling and GDTA and 
reflected Nielsen’s (1993) usability heuristics, such as 
providing prompt feedback. Three male and two female 
biopharmacologists and process engineers at CELISCA 
were asked to select and configure a barcode label for 
application to micro-plates in a HTS process using both 
interfaces. The software underlying the interfaces 
recorded performance data, including time-to-subtask 
completion and number of errors.  
 
Once experts completed the task, they were asked to 
fill out the SUS for both the existing and the new bar 
coder dialogs. The survey included statements on 10 
characteristics of interfaces (complexity, consistency, 

learnability, ease of use, and so on). The subjects rated 
their degree of agreement with statements like, “I think 
this interface is unnecessarily complex,” on a scale 
from 1 (strongly disagree) to 5 (strongly agree). They 
were also asked to provide written comments on the 
advantages and disadvantages of each interface 
alternative.  
 
In the second study, we evaluated our metaphor-based 
approach to the redesign of the entire HTS method 
editing software. We wanted to determine whether the 
cookbook metaphor might enhance interface usability. 
Again, we recruited five domain experts 
(biopharmacologists and process engineers) at CELISCA 
to evaluate both the new prototype and the SAMI® 
method editor interfaces. Their ages ranged from 31 to 
41 and three were male. They were novices when it 
came to using the new prototype.  
 
In addition to our work with experts at CELISCA, five 
graduate students from North Carolina State University, 
between 23 and 40 years old, were recruited to 
evaluate only the SAMI® method editor interface in 
terms of usability. Four of the students were male. 
They were all novices at using the software, but some 
had previously seen the application interface. We made 
a comparison of the new prototype interface design, as 
evaluated by the CELISCA personnel, with the original 
SAMI® method editor interface evaluated by the 
students in terms of errors committed with the 
applications and the subjective satisfaction ratings. 
 
At the beginning of the study, each participant was 
provided with an introduction to the interface being 
evaluated and its purpose. The participants were also 
given brief user manuals, which included an overview 
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and descriptions of the types of tasks, devices, and 
software and how they are used for developing new 
methods or controlling devices. Subsequent to 
familiarization with the interface, the participants were 
required to complete scenarios in which they 
programmed a new assay procedure for the HTS line.  
 
The users used the features of the existing SAMI® and 
the new metaphor-based prototype for programming 
the processes of micro-plate labeling, ingredient 
transfers, and incubation. They were provided with 
step-by-step instructions for following the scenarios, 
including explanations of the purpose of each step. 
 
During completion of the scenarios by the expert 
biochemists from CELISCA, time-to-subtask completion 
and the number and types of interface errors were 
recorded by a Javascript embedded in an online version 
of the new metaphor-based prototype. A semi-
functional prototype of the SAMI® method editor was 
also developed in Java because of access limitations to 
the actual installation of the software at CELISCA and 
to allow us to remotely collect time-to-subtask 
completion and the number of interface errors.  
 
Subtasks in method programming included, for 
example, configuring the bar coder for plate labeling 
and configuring the incubator for sample heating. After 
completing the task scenarios, CELISCA users filled-out 
the SUS questionnaires for the existing application and 
new prototypes. Since the NCSU users were novices to 
the SAMI® interface, they only evaluated and 
completed SUS questionnaires for that interface. They 
were asked to rate the interface and dialogs in terms of 
the 10 characteristics, and to comment on their 
shortcomings and advantages. 

Although the scenarios used with each interface were 
designed to be similar in steps, task performance with 
the prototype and the SAMI® editors was not identical 
(from a functional perspective) because of certain 
interface features. For example, to configure the 
incubator, in both scenarios users were able to set the 
incubation time. However, the incubator interface as 
part of the metaphor-based prototype also allowed 
users to set variables, such as temperature and 
incubator gas mixture, which the SAMI® interface does 
not include (in the existing system, these variables are 
set at the physical incubator control panel). Thus, more 
scenario steps were required for interacting with the 
incubator dialog in using the new interface than in 
using the existing SAMI® interface. Therefore, we 
could only compare performance results for tasks that 
were functionally similar across both interfaces. These 
included: (1) assay development, which involved 
dragging and dropping devices with the existing 
interface and text entry in the new interface; and (2) 
bar coder configuration, which involved selecting a label 
location and content in both interfaces. 
 
Results 
Table 2 presents the subtask performance times for the 
new bar coder prototype and SAMI® bar coder dialog 
for the CELISCA participants in the first study. A one-
sided Wilcoxon Mann-Whitney test revealed no 
significant differences in performance times for the bar-
coder configuration procedure among the two interfaces 
(p>0.05). No errors were committed while using either 
bar-coder interface. (Table 2 only presents data on 
those subtasks for which statistical comparisons were 
considered valid, based on functional similarities across 
the SAMI and new prototype interfaces.) 
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The subjective rating survey yielded scores for the 
redesigned bar-coder dialog and the existing bar-coder 
action/configuration dialog of 4.04 and 3.24, 
respectively. A one-sided Wilcoxon Mann-Whitney test 
showed satisfaction ratings to be significantly higher for 
the redesigned bar coder dialog (p=0.0397). The 
expert biochemists commented that the new interface 
provided for graphic-oriented control, displayed the 
micro-plate barcode position in a clearer manner, 
presented less unnecessary information, offered 
“wizard”-like popups, and was generally easy to 
understand and more intuitive. The participants said 
that the existing software control mechanisms were not 
state-of-the-art (for example, no popups) and that the 
interface was not as interactive as the new prototype. 
The main disadvantage of the prototype that the 
domain experts noted was that the graphical depiction 
of the micro-plate was not realistic enough (Kaber et 
al., 2006). Based on these data, we inferred that the 
design of the new prototype dialog was an 
improvement over the existing dialog from a user 
satisfaction perspective and that the CTA-based 
approach to interface design guideline formulation and 
prototype development was effective. 
 
Table 2. Performance times for prototype and SAMI® 
bar coders (in seconds). 

SAMI® Bar 
Coder Interface 

New Bar Coder 
Interface Task 

Mean SD Mean SD 

Select Side 3.6 1.8 9.9 13.9 
Select Label 3.8 2.4 4.5 2.7 
Enter Content 12.9 6.1 9.8 11.3 
Whole scenario 24.8 10.4 24.3 27.5 

Note: No significant differences, p>0.05. 

With respect to the second study, Table 3 presents the 
subtask performance times for the new prototype and 
existing method editors for the expert biochemists at 
CELISCA. In general, the new interface appeared to 
allow for quicker task performance. A one-sided 
Wilcoxon Mann-Whitney test revealed assay 
development to be significantly shorter using the new 
interface (p=0.004), but there was no evidence of a 
difference in bar-coder configuration and total 
development times between the two interfaces. The 
incubator configuration tasks were not functionally 
comparable, and therefore, statistical analyses were 
not considered valid. 
 
Table 3. Performance times for prototype and SAMI® 
method editor (in seconds). 

SAMI® 
Interface New Interface Task 

Mean SD Mean SD 

Bar coder 
configuration 

34.2 15.3 40.1 41.7 

Incubator 
configuration 

13.2 8.4 29.4 29.1 

Assay 
development 

254.2 72.9 46.7* 59.7 

Whole scenario 373.5 116.7 236.2 274.8 

* Significant difference, p<0.05. 
 
Novices to the two interfaces (metaphor-based 
interface users at CELISCA and SAMI® users at NCSU) 
were compared with respect to the number of errors 
committed during the HTS method programming 
scenarios. The users evaluating the new prototype 
made one (1) error of commission (taking an incorrect 
step) and no errors of omission (failing to take the 
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correct step). Users evaluating the existing method 
editor made 16 commission errors and 11 omission 
errors. Although users made more errors using the 
existing interface than when using the new interface, 
since the two operating scenarios were not functionally 
identical across all steps, it is not possible to make 
statistical comparison of these results. 
 
CELISCA biochemist evaluations of the new prototype, 
in terms of user satisfaction, were higher than the 
student evaluations of the SAMI® interface. The 
average user responses to the SUS questionnaire for 
the SAMI® interface and the new metaphor-based 
interface were 3.06 and 3.92, respectively. A one-sided 
Wilcoxon Mann-Whitney test confirms that satisfaction 
ratings were significantly higher for the new prototype 
(p=0.0476). (It is important to note here that 
participants at CELISCA also evaluated the existing 
SAMI® interface, and gave it an average score of 4.14. 
Their SAMI® and new prototype scores were not 
significantly different. However, it is difficult to make 
any inferences based on these results, since CELISCA 
evaluators represented novices with respect to the new 
prototype, but were highly experienced with the SAMI® 
interface.) 
 
The five evaluators at CELISCA indicated the main 
advantage of the new metaphor-based prototype was a 
single, comprehensive interface for assay development. 
They were not required to make use of several software 
packages, as with the SAMI® application, to develop an 
assay from start to finish. The experts also felt that the 
metaphor-based interface was easy to use, but was too 
text-oriented. Based on these results, we inferred that 
the new prototype design was superior to the existing 
method editor from a usability perspective and that our 

use of the Neale and Carroll (1997) metaphor-based 
approach to the redesign of the HTS control software 
was generally effective. 
 
Discussion and Conclusions 
Three usability goals were identified for our metaphor-
based redesign of the HTS method editor interface: 
efficiency in task completion, error prevention, and user 
satisfaction. The goal of improved efficiency can be 
influenced by the development of recognizable system 
components (for example, interactive components) and 
the match of the system components to analogous 
processes in the real world (for example, NLP).  
 
Furthermore, the structuring of the different windows 
and automatic content updating (around a core 
structure within the metaphor-based redesign) assist 
the user in linking the interactive components within 
the interface to each other and to the cookbook 
metaphor itself. The insignificant results of the usability 
evaluation of the bar-coder dialogs revealed that the 
experts can adapt quickly to the new interface to 
achieve performance comparable to the use of the 
existing software with training. The large difference in 
assay development times for the two method editor 
interfaces was due to the differences in the interaction 
provided by the metaphor.  
 
The goal of increased effectiveness can be linked to the 
development of system components that support both 
novice and expert user understanding of tasks (for 
example,  the process flow chart). The usability 
evaluation indicated that novice users made more 
errors using the existing HTS method editor interface 
than when using the metaphor-based interface. This 
represents a reduction in all errors, as any uncorrected 
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errors in the assay development will lead to later 
performance problems.  
 
Finally, the goal of user satisfaction can be linked to the 
use of feedback and success measures (for example, 
task completion). The usability evaluation indicated 
that novices found the metaphor-based interface to 
better support their completion of the HTS task. 
 
In general, these results demonstrate the effectiveness 
of Neale and Carroll’s (1997) metaphor-based approach 
to developing usable interfaces in a very unique and 
complex domain, that is, biological compound screening 
for drug development. Though it is possible that other 
factors, such as the novelty of the design, could 
account for the greater user satisfaction with the 
metaphor-based interface, it is unlikely that such 
factors influenced the effectiveness of this interface, as 
evidenced by the smaller number of errors committed.  
 
We did find some steps in Neale and Carroll’s (1997) 
approach to be more useful than others. For example, 
those steps that deal with mismatch handling, in some 
cases, may be less relevant. That is, a metaphor may 
be robust enough such that no significant mismatches 
are apparent. Furthermore, if there are metaphor 
mismatches, it may be difficult to translate Neale and 
Carroll’s strategies (for example, teaching metaphor 
modification rules, encouraging exploration of system 
features, and so on) into structured recommendations 
for managing them. However, Hamilton (2000) cautions 
against ignoring mismatches in interface design, 
claiming that users can experience a degree of 
cognitive dissonance if they are not handled properly. 
 

This study expanded on the methodology proposed by 
Neale and Carroll (1997) by integrating the use of 
formalized CTA methods to guide the novel metaphor-
based design with the purpose of enhancing 
supervisory control interfaces in life sciences 
automation.  
 
The combination of AH modeling and GDTA with the 
Neale and Carroll approach proved to be effective in 
identifying the cookbook metaphor and the 
development of usable interfaces for the target domain, 
as demonstrated through the achievement of the 
usability goals. Related to this, several guidelines have 
been published in the attempt to provide designers with 
different approaches to applying metaphors to interface 
design (e.g. Alty et al., 2000; Carroll & Mack, 1985). 
Although none of these guidelines explicitly calls for the 
use of CTA methods, some do require a functional 
description of the system, as can be achieved through 
AH models. 
 
Several caveats are important to discuss with respect 
to this study. First, we used a remote usability 
evaluation method (Dumas, 2003) to assess 
performance with the metaphor-based prototype. We 
provided participants at CELISCA with detailed 
instructions for accessing the new prototype (online) 
and evaluating its usability, but we were not physically 
present in Germany during the evaluations to directly 
observe biochemist interface behaviors. However, this 
method may have produced conservative results 
because we did not provide real-time assistance or 
explain design decisions to the evaluators, which might 
have inflated satisfaction ratings, for example. Beyond 
this, remote usability evaluation can be considered 
similar to real-life situations, in which novice users try 
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out new software applications alone and learn how to 
use them by trial and error.  
 
Second, it would have been helpful to have a large 
group of domain experts, who are familiar with HTS 
(but not with SAMI®), evaluate both interfaces. This 
would have allowed for a more direct comparison of 
error results with the method editors. The graduate 
students at NCSU who evaluated the SAMI® only had 
some familiarity with life sciences automation, while the 
experts at CELISCA may have been influenced in 
usability ratings and performance by their prior 
knowledge of the SAMI® software. Relevant to this, it 
is difficult to recruit potential participants – HTS 
biologists, chemists and process engineers – for such 
experiments, since this expert population is very small.  
 
Finally, the two participant groups who evaluated the 
method editors represented novices. As a result, 
individual differences may have played a large role in 
our outcomes, such as the number of errors committed. 
An alternative approach to the usability evaluation 
could involve training subjects to a predetermined level 
of proficiency with the software and prototype before 
assessing their performance. 
 
In the future, it would be interesting to develop a fully 
functional prototype of the metaphor-based method 
editor interface and to carry out a more comprehensive 
evaluation, as described above, with a larger 
participant population to fully understand any errors 
that could result from the metaphor-based interface 
design.  
 
Other usability evaluation methods could be used as 
well, such as verbal protocols (Wiedenbeck, Lampert & 

Scholtz, 1989), to allow for detailed user behavior and 
error analysis. Another evaluation method that could be 
considered for future work is cognitive modeling 
techniques, such as GOMS (goals, operators, methods, 
selection rules; Card, Moran, & Newell, 1983). GOMS 
models can predict time-to-task completion (Card et 
al., 1983), time to learn how to perform a task (Kieras, 
1999), and task complexity, and can thus replace user 
testing at early interface design stages.  
 
One of the issues related to interface design for 
cognitive tasks, such as HTS method programming, is 
that software manufacturers develop applications that 
may not “speak the users’ language” (Nielsen, 1993). 
Human factors experts, who have studied operator 
information needs through CTA methods and have 
detailed knowledge of usability evaluation methods, can 
act as mediators between biopharmacologists and 
software developers to better specify interface 
requirements. By using human-computer interaction 
methods to explicitly represent biopharmacologist 
needs via prototypes, manufacturers may be able to 
more effectively establish software design requirements 
and specifications. 
 
Last, one ancillary result of this work is the 
development of recommendations for redesigning 
actual cookbooks. The combination of a method flow 
chart with the mock-NLP assay scratch pad in the 
metaphor-based interface suggested that the 
development of more flow charts of cooking processes 
in cookbooks might be helpful to chefs. Furthermore, 
not all cookbooks include lists of tools and ingredients 
that support work organization prior to, and while, 
cooking. Adding these components to cookbook recipes 
may increase their usability. 
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Practitioner’s Take Away 

 Metaphors can be a powerful tool for guiding interface 
design in specific domains. They enable users to map 
knowledge from a familiar source domain to an 
unfamiliar target domain, thus they are particularly 
useful for novices. 

 The combination of formalized CTA methods with 
existing frameworks for developing metaphor-based 
interfaces can be helpful in developing, evaluating, and 
refining an appropriate metaphor. 

 Mismatches between software environments and the 
real-world analog defining a design metaphor can be 
effectively addressed by using composite metaphors, 
including object and process references. 

 Metaphor-based interfaces can significantly promote 
system usability, in particular effectiveness, efficiency, 
and user satisfaction in complex systems. 
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