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Abstract 

Smartwatches are quickly becoming a popular complement 
to smartphones for notifications and activity tracking, yet 
most lack an effective method for text input. Typing on a 
smartwatch with an onscreen keyboard was originally 
thought to be impractical due to the small screen size. As a 
result, alternative keyboards that use “zoom” features to 
enlarge key size were developed as a potential solution. 
However, observed typing speeds with alternative keyboards 
are slow, and they often have a steep learning curve. Recent 

research, in a lab setting using a more familiar full QWERTY 
onscreen keyboard, demonstrated that it is possible to type 
quickly on a smartwatch while seated. Given the ubiquitous 
and mobile nature of smartwatches, this study examines 
typing performance using a full QWERTY keyboard while 
mobile. Participants typed using two different text input 
methods—trace and tap—with their index finger while 
standing and while walking. Results show participants typed 
faster with trace (35 words per minute) than tap (30 words 
per minute), regardless of whether they were standing or 
walking or whether they had prior experience with trace 
input. These typing speeds are among the fastest reported in 

the smartwatch literature. Typing accuracy was also better 
for trace than for tap and better when standing than while 
walking. Subjectively, participants rated trace easier to use, 
preferred it over tap, and suggested they would use it in the 
future if available. Recommendations to include a full 
QWERTY keyboard on all smartwatch designs are discussed.  
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Introduction 

In a society that appears to be “always on,” personal computers that offer a unique and 
convenient contribution to consumer lives are of great value. The smartwatch is the latest in a 
line of personal computers that aim to be the next great step in convenient technology. 
Smartwatches are billed with the promise of bringing the power of the smartphone to the 

convenient location of the wrist. However, nearly all smartwatches are lacking one crucial 
feature—typing capabilities—which is a primary function of smartphones. Pre-defined responses 
(e.g., “In a meeting,” “Call you back later,” and “Hello!”) and voice input are the typical 
solutions to this issue, yet these methods lack the versatility and customization that typing on a 
keyboard allows. If smartwatches are to be the next level of convenient technology, then an 
efficient method of keyboard typing is essential. 

Alternative Typing and Interaction Methods for Smartwatches 
When smartwatches made their debut, early thoughts of including a keyboard for typing 
purposes faced much skepticism for three main reasons. First, the size of the smartwatch 
screen and resulting size of the keyboard was thought to be too small for effective use (Arefin 
Shimon et al., 2016; Hong, Heo, Isokoski, & Lee, 2015). Second, users’ fingers were assumed 
to be too large in relation to the keyboard to accurately hit the small keys, also known as the 
“fat finger issue” or “fat finger problem” (Arefin Shimon et al., 2016; Kim, Sohn, Pak, & Lee, 
2006; Oney, Harrison, Ogan, & Wiese, 2013; Siek, Rogers, & Connelly, 2005). Third, the users’ 
input finger was thought to be too large in relation to the size of screen and could occlude the 

users’ view of the screen (Arefin Shimon et al., 2016; Funk, Sahami, Henze, & Schmidt, 2014). 
In response to these issues alternative forms of input, not limited specifically to typing, for 
small screen devices were developed. These include gesture recognition systems, wristband 
input, and skin-based input among others.  

The development of gesture recognition systems is an attempt to circumvent the limited screen 
space of small screen devices, including smartwatches, by expanding interaction to the mid-air 
space around the watch. Examples of gesture recognition systems include HoverFlow (Kratz & 
Rohs, 2009), MagiWrite (Ketabdar, Roshandel, & Yüksel, 2010), Gesture Watch (Kim, He, 
Lyons, & Starner, 2007), zSense (Withana, Peiris, Samarasekara, & Nanayakkara, 2015), 
WristFlex (Dementyev & Paradiso, 2014), Transture (Han, Ahn, & Lee, 2015), Abracadabra 
(Harrison & Hudson, 2009), and mid-air gestural input (Katsuragawa, Wallace, & Lank, 2016; 
Song et al., 2014). Gesture recognition systems paired with finger rings/discs have also been 
explored, such as eRing (Wilhelm, Krakowczyk, Trollmann, & Albayrak, 2015) and Magic Ring 
(Jing, Cheng, Zhou, Wang, & Huang, 2013). Darbar, Sen, Dash, and Samanta (2016) 
introduced a sensor-based mechanism paired with a magnetic disk on the index finger for text 

input on smartwatches; the authors of the study found that users were able to input four words 
per minute (WPM).  

Attempts have also been made to use the wristband and bezel of smartwatches as a means of 
input. Designs for wristband input include BandSense (Ahn, Hwang, Yoon, Gim, & Ryu, 2015), 

Watchit (Perrault, Lecolinet, Eagan, & Guiard, 2013), and CircularSelection (Plaumann, Müller, & 
Rukzio, 2016). Funk et al. (2014) evaluated a touch-sensitive wristband and found users were 
able to type three WPM using an on-band linear keyboard and four WPM using the on-band 
multi-tap keyboard layout. Modified bezel designs use the watch bezel as an interactive input 
method. TiltType (Partridge, Chatterjee, Sazawal, Borriello, & Want, 2002), 2D panning and 
twist with binary tilt and click (Xiao, Laput, & Harrison, 2014), WatchMI (Yeo, Lee, Bianchi, & 
Quigley, 2016), EdgeTouch (Oakley & Lee, 2014), WatchOut (Zhang, Yang, Southern, Starner, 
& Abowd, 2016), and B2B-Swipe (Kubo, Shizuki, & Tanaka, 2016) are all examples of modified 
bezel designs. Kerber, Kiefer, and Löchtefeld (2016) compared the input techniques of a digital 
crown, a rotating bezel, and touch input on a one-dimensional selection task using a 
smartwatch. Kerber et al. (2016) found both the touch input and digital crown were rated as 
more usable than the rotating bezel. Other bezel designs extend input to the side of the 

smartwatch, such as PressTact (Darbar, Sen, & Samanta, 2016). 

Additional input methods include the use of the back of the device for interaction (Baudisch & 
Chu, 2009), a smartwatch camera (WatchMe; Van Vlaenderen, Brulmans, Vermeulen, & 

Schöning, 2015), a non-smartwatch camera based keyboard (CamK; Yin et al., 2016), thumb 
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slide movement of the watch hand (ThumbSlide; Aoyama, Shizuki, & Tanaka, 2016), blowing air 
(Blowatch; Chen, 2015), a non-voice acoustic input (Whoosh; Reyes et al., 2016), lightful 
interaction (Yoon, Park, & Lee, 2016), multi-screened bracelets (Facet; Lyons, Nguyen, 
Ashbrook, & White, 2012), a finger-mounted fine-tip stylus (NanoStylus; Xia, Grossman, & 
Fitzmaurice, 2015), single-tap interaction with different areas of finger pads (TouchSense; 
Huang et al., 2014), and gaze interaction (Akkil et al., 2015).  

Even the skin of the user has been utilized as an input area by SkinWatch (Ogata & Imai, 
2015), Skin Buttons (Laput, Xiao, Chen, Hudson, & Harrison, 2014), iSkin (Weigel et al., 2015), 
and Skinput (Harrison, Tan, & Morris, 2010). Knibbe et al. (2014) combined gesture and skin 
input for a bimanual gesture input system. 

A mobile typing method must meet three requirements to be acceptable to the mass consumer 
market (Zhai & Kristensson, 2012). First, the input method must be fast, allowing users to type 
quickly. Second, it should be intuitive for new users to efficiently use the entry method. Third, 
the input method should support increasing efficiency through practice in use. Based on these 

requirements, it is doubtful the alternative input methods discussed in this section may ever be 
adopted by the mass consumer market for typing on smartwatches as they all fail at least one 
of these requirements. 

Alternative Keyboards for Smartwatches 
Despite the original skepticism regarding the feasibility of typing on a smartwatch, several 
studies have shown keyboard-based typing is feasible and more effective than alternative input 
methods. In recent years, numerous keyboards have either been designed or adapted for use 
on smartwatches. In a review of the current existing smartwatch keyboards, Arif and Mazalek 
(2016) provided a summary table and detailed descriptions and illustrations of these keyboards. 
In this study, we updated the summary table presented in Arif and Mazalek’s (2016) article with 
the latest research findings, and we added columns for participant mobility (seated, standing, 
walking) and subjective measures (see Appendix). As alternative keyboards continue to be 
developed, it is important to know how participant mobility affects performance, perceived 
workload, user satisfaction, and intent to use. As shown in the Appendix, few studies report 
detailed subjective ratings for alternative input methods, and the studies focus primarily on 

performance metrics. The studies that do report subjective ratings tend to be limited to 
preference ratings and non-standardized questionnaires. We believe solely relying on 
performance as a measure of keyboard quality is shortsighted; if users do not like the keyboard 
or use it, typing speed is irrelevant.  

Despite all the research done with both non-QWERTY and QWERTY alternative keyboards, they 
have primarily failed at mass adoption largely due to their steep learning curves (Bi & Zhai, 
2016). In addition, several of these alternative keyboards demonstrate very low text entry 
speeds. According to Arif and Mazalek (2016), most techniques using predictive technology 
achieved about 20 WPM, and for non-predictive, the range was from 4 to 22 WPM. The fastest 
typing speeds observed on a smartwatch have been accomplished with the use of a sentence-
based decoder: Velocitap (41 WPM; Vertanen, Memmi, Emge, Reyal, & Kristensson, 2015) and 
trace input (24 WPM and 37 WPM; Gordon, Ouyang, & Zhai, 2016; Turner, Chaparro, & He, 
2016, respectively). According to the guidelines of Zhai and Kristensson (2012), an existing 
smartphone keyboard that users are already familiar with may be best suited for use on a 
smartwatch, especially if the end goal is mass adoption.  

In this paper, keyboards designed specifically for use on small screen devices, or those 
requiring an extra interaction outside of typing (i.e., zooming or panning), are referred to as 
alternative keyboards. In addition, traditional point-and-tap input is referred to as tap, and 
gesture input is referred to as trace. Trace is unique over point-and-tap in that it requires the 

user to use one continuous on-screen finger motion to type a word (Figure 1). 
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Figure 1. Examples of standard point-and-tap input (left) and trace input (right). 

Walking and Typing 
The majority of the aforementioned keyboards have only been studied with the users in a 
seated position. Yet, typing on a smartphone is rarely static, in fact, typing while standing or 
walking is quite common (Yatani & Truong, 2009). For example, Turner et al. (2016) observed 
some of the highest reported typing speeds on a smartwatch in a seated position. The authors 
went on to state in their limitations and future studies the importance of observing typing 
performance and garnering user feedback in mobile scenarios to more accurately represent 
normal user typing behavior. They also mentioned that additional research is needed to 

determine how users perform with smartwatch keyboards in mobile conditions. Based on the 
findings of Schildbach and Rukzio (2010), alternative keyboards that utilize zoom or panning 
functions may not be effective for text input while walking; however, little research has been 
done to determine what keyboard may be better suited. Not only do smartwatches need an 
effective typing method, but the method must be versatile and forgiving enough for mobile 
typing.  

Smartphone 

Walking and typing on a smartphone is a complex, yet common, task that requires the 
coordination of multiple cognitive and physical resources. To achieve an accurate text message 
when walking and typing, visual-motor coordination, finger movements, and cognitive attention 
must integrate to compensate for hand and body oscillations experienced during walking 
(Agostini, Fermo, Massazza, & Knaflitz, 2015; Bergstrom-Lehtovirta, Oulasvirta, & Brewster, 

2011). Walking while using a smartphone has been shown to negatively affect text legibility 
(Mustonen, Olkkonen, & Hakkinen, 2004), reading comprehension (Barnard, Yi, Jacko, & Sears, 
2007; Schildbach & Rukzio, 2010), working memory (Lamberg & Muratori, 2012), target 
selection (Kane, Wobbrock, & Smith, 2008), and increase mental workload and stress (Vadas, 
Patel, Lyons, Starner, & Jacko, 2006). In addition, walking while typing affects user walking 
behavior, such as walking speed, gait pattern, and situational awareness (Agostini et al., 2015; 
Bergstrom-Lehtovirta et al., 2011; Hatfield & Murphy, 2007; Lamberg & Muratori, 2012; 
Licence, Smith, McGuigan, & Earnest, 2015; Lopresti‐Goodman, Rivera, & Dressel, 2012; 

Plummer, Apple, Dowd, & Keith, 2015; Schabrun, van den Hoorn, Moorcroft, Greenland, & 
Hodges, 2014). Bergstrom-Lehtovirta et al. (2011) showed the preferred walking speed of 
participants dropped from 2.4 mph while undistracted to 1.8 mph while interacting with a 
touchscreen device. In addition, accuracy for the target selection task significantly decreased 
when walking only 20–40% of their preferred walking speed. The decrease in walking speed 

observed by Bergstrom-Lehtovirta et al. (2011) is not surprising as typing has been shown to 
affect walking more than either talking or reading (Lamberg & Muratori, 2012; Schabrun et al., 
2014). 

Most relevant to our review is walking’s impact on typing. Several studies have shown typing on 

a smartphone declines both in speed and accuracy with walking compared to sitting or standing 
(Clawson, Starner, Kohlsdorf, Quigley, & Gilliland, 2014; Conradi, Busch, & Alexander, 2015; 
Mizobuchi, Chignell, & Newton, 2005; Nicolau & Jorge, 2012; Schildbach & Rukzio, 2010; Yatani 
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& Truong, 2009). Attempts have been made to improve typing performance when walking such 
as the exploration of the following technologies: walking user interfaces (WUIs; Kane et al., 
2008), games to improve the typing and walking experience (Rudchenko, Paek, & Badger, 
2011), use of a smartphone accelerometer to increase accuracy (Goel, Findlater, & Wobbrock, 
2012), and feedback of user surroundings (Arif, Iltisberger, & Stuerzlinger, 2011). Other 
research has studied optimal key size for mobile text input, recommendations range from 3 to 

14 mm depending on the device used (Conradi et al., 2015; Mizobuchi et al., 2005; Parhi, 
Karlson, & Bederson, 2006). Lin, Goldman, Price, Sears, and Jacko (2007), using Fitts’ Law, 
stated target size should be dynamic and change for the user’s mobility: 4.2 mm in diameter 
when seated, 5.3 mm when walking on a treadmill, and 6.4 mm when walking an obstacle 
course. Optimal key size for use on a smartwatch is thought to be 5.7 x 5.7mm to 7 x 7mm 
(Dunlop, Komninos, & Durga, 2014; Shao et al., 2016). 

Smartwatch 

It would appear that walking and typing is quite difficult and demanding for a user, yet it is a 
common user behavior on a smartphone. Only two studies have evaluated typing on a 
smartwatch in mobile scenarios: Hong, Heo, Isokoski, and Lee (2016) and Darbar, Dash, and 
Samanta (2016). This is most likely due to the fact that most smartwatches do not currently 
include a keyboard for typing.  

Hong et al. (2016) compared user performance with SplitBoard, Zoomboard, and a standard 
QWERTY keyboard using a Samsung Gear 1 smartwatch with the auto-correct feature disabled.  
Participants in the study completed the study tasks while standing or walking on a treadmill. 
Participants were allowed to set their own walking speed, walking 2.4 mph on average. 

Performance decreased for all three keyboards from the standing to walking condition: 
SplitBoard (15 WPM to 13 WPM), ZoomBoard (10 WPM to 9 WPM), and the standard QWERTY 
(13 WPM to 12.5 WPM). Declines in performance when walking is to be expected, as seen in the 
literature on walking and typing on a smartphone. However, declines observed by Hong et al. 
(2016) on a smartwatch were quite small, refuting the idea that key size has to be increased to 
avoid degraded performance while mobile (Lin et al., 2007). 

Darbar, Dash, et al. (2016) compared their ETAO keyboard prototype to SplitBoard, 
Zoomboard, and a standard QWERTY keyboard using a LG W100 Watch without an auto-correct 
feature. Study participants’ performance was compared when they used the different keyboards 
while sitting or walking in the lab. As with Hong et al. (2016), performance worsened with all 
keyboards from the sitting to walking condition: ETAO (12 WPM to 9 WPM), SplitBoard (12 WPM 
to 9 WPM), ZoomBoard (9 WPM to 8 WPM), and standard QWERTY (7 WPM to 5 WPM).  

Experience  
In addition to mobility, prior experience with text input methods may influence typing 
performance on a smartwatch. Reyal, Zhai, and Kristensson (2015) found that novice trace 
users were able to increase trace typing speed on a smartphone from 26 WPM to 34 WPM over 
a 10-day period. Relatively little research has been reported on how prior typing experience 
affects typing performance on a smartwatch. Kim et al. (2006) found entry speeds increased 

18% over 5 days with no difference in error rate when using the One-Key Keyboard. Gupta and 
Balakrishnan (2016) demonstrated user performance increased over a 10-day span with both 
the DualKey QWERTY and DualKey SWEQTY keyboards. Turner et al. (2016) showed that self-
reported experts with trace input on a smartphone typed 6 WPM faster, when tracing on a 
smartwatch, than novice trace users. This finding provides evidence that experience with trace 
input may carry over to smartwatch performance.  

Purpose 
This study is a follow-up to Turner et al. (2016). In the current study, we investigated 
participants’ typing performance and subjective user ratings while they performed the study 
tasks on a full QWERTY smartwatch keyboard while standing or walking. This study aims to 
answer four research questions:  

• What impact does mobility (standing vs. walking) have on typing performance using 
trace and tap input?  

• Which input method (trace vs. tap) results in better typing performance when walking? 
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• Does prior experience with trace input on a smartphone influence typing performance 
on the smartwatch? 

• Which input method (trace vs. tap) results in better subjective ratings when walking? 

Methods 

The metrics gathered in this study mirror those used in Turner et al. (2016) with the exception 
that participants typed while standing and while walking rather than sitting. Mobility (standing 
vs. walking), tracing experience (novice vs. expert on a smartphone), and text input method 
(trace vs. tap) were the independent variables. Typing performance (WPM), accuracy (word 
error rate [WER]), and subjective measures of performance were the dependent variables. 

Multiple hand dimensions were also measured to assess if there was a relationship between 
hand and finger size and typing performance. 

Participants 
Thirty-two college age participants (20 female, 12 male), ranging from 18–34 years of age (M = 
22.53, SD = 4.42), participated in this study for course credit. Participants were recruited based 
on their expertise with trace on a smartphone (all had experience with tap). None had 
experience typing on a smartwatch. Participants self-reported their experience level with trace 
on a 1–7 scale (1 = no experience; 7 = expert). Novices were categorized by a 1 or 2 (M = 
1.25, SD = 0.44) and experts by a 6 or 7 (M = 6.38, SD = 0.5) rating. Participants were not 
made aware of the expertise criteria prior to their self-evaluation. Those who identified as a 3–5 
rating were dismissed from the study and given partial course credit. Two participants were 
dismissed for not meeting the study criteria. Sixteen novices (11 female, 5 male) and 16 
experts (9 female, 7 male) participated; all typed on the smartwatch using their index finger. 

All participants were fluent English speakers, had normal or corrected to normal vision, and did 
not have any physical limitations to their hands that would prevent them from being able to 
type on a smartwatch. All participants were experienced with sending and receiving text 
messages on their touchscreen smartphone.  

Materials 
A Samsung Galaxy Gear 1 (display size of 1.63 inches) with the Swype word-gesture keyboard 
(version 1.6.5.23769) was used in this study. The keyboard measured 17.5 mm wide x 30 mm 
high, and each key 4 mm x 3 mm. All 35 keys on the keyboard were fully functioning and the 

autocorrect feature was enabled. 

A subset of phrases were randomly selected from a list of 500 composed by MacKenzie and 
Soukoreff (2003). Ten practice phrases and 15 experimental phrases were randomly chosen for 
each condition; there was no overlap between the practice and experimental phrases. The 

following are some example phrases: “time to go shopping,” “a great disturbance in the force,” 
and “all good boys deserve fudge.” Novices and experts of the same participant number 
received the same phrases (i.e., p1 novice received the same phrases as p1 expert, but a 
different set than p2, p3…novice and expert). The phrases contained lowercase letters only (no 
numbers, symbols, punctuation, or uppercase letters). Phrases ranged from 16 to 42 characters 
for all conditions. A JAS Trackmaster (model number: TX425C) treadmill was used to simulate 
walking conditions (Hong et al., 2016). Participants were allowed to choose their walking speed 
but instructed to select a comfortable speed they could maintain for the entirety of the walking 
conditions (Hong et al., 2016). Walking speeds ranged from 1.5 to 2.5 mph (M = 2.04, SD = 
0.30). Figure 2 shows the experimental setup. 
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Figure 2. Experimental setup. 

Procedure 
After providing consent, participants were given a brief demographic survey assessing 

smartphone texting behavior and text input method usage. Based on their experience with trace 
input on a smartphone, participants were placed in either the novice or expert group. 
Participants were then introduced to the first condition, either tap or trace and walking or 
standing, and given a brief tutorial by the experimenter. Next they were given 10 practice 
phrases to type before the experimental trials began. For the walking conditions, participants 
started off at a speed of 1.0 mph and allowed to increase walking speed after each practice 
phrase until a comfortable speed was selected. The order of input method and mobility condition 
was partially counterbalanced across all participants to prevent participants from doing two 
consecutive walking conditions.  

For the experimental trials, 15 phrases were presented one at a time on a computer screen in 
front of the participants. They were instructed to read each phrase aloud to ensure that they 
understood the phrase and to verbally indicate when they started and stopped typing (Arif et 
al., 2011; MacKenzie & Read, 2007). Time was recorded by a researcher using a digital stop 
watch. Participants were instructed to type the phrases as quickly and accurately as possible. 
They were allowed to correct mistakes but not required to do so. Phrases were saved as a text 

file on the watch and later scored manually by an experimenter.  

Once participants had completed the 15 phrases of the condition, they completed a perceived 
usability survey and a mental workload assessment. After finishing the mental workload 
assessment, participants were introduced to the second condition and the steps were repeated. 

After all four conditions were completed, participants were asked to rate the four conditions on 
perceived performance and preference scales and an intent to use scale. Finally, the 
participants’ typing hand and finger dimensions were measured. They were then debriefed and 
thanked for their time.  

Design  
A 2 x 2 x 2 mixed design was used for this study. The independent variables were input 
method, mobility, and experience. Input method (trace vs. tap) and mobility (standing vs. 

walking) were the within-subjects factors. Experience (novice vs. expert) was the between-
subjects factor. Dependent variables included typing speed, typing accuracy, subjective 
perceptions of usability, workload, performance, and intent to use.  

Performance 
Performance was measured by typing speed, words per minute (WPM), and typing accuracy as 
reflected by the word error rate (WER). Typing speed was calculated using WPM = 12*(T-1)/S 
where T is the number of transcribed characters, S is the number of seconds, and one word is 
assumed to be 5 characters (MacKenzie & Tanaka-Ishii, 2010). Typing accuracy, or WER, was 
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calculated using the number of word errors per phrase divided by the total number of words per 
phrase.  

Typing accuracy was investigated by the WER and the type of errors: substitution, insertion, 
and omission error rate. Substitution errors occurred when a word was transcribed other than 
what was intended. Insertion errors occurred when an extra word was transcribed. Omission 
errors occurred when an intended word was omitted from the transcription.  

Subjective Measures 
The subjective measures were determined by measuring the workload, perceived usability, 
perceived performance and preference, and intent to use. 

Subjective workload 

The raw NASA Task Load Index (NASA TLX - R; Hart & Staveland, 1988) was used to measure 
participants’ perceived workload and performance after each condition. Participants provided 
ratings on a 21-point scale for perceived mental, physical, and temporal effort; performance; 

overall effort; and frustration. A higher score indicates a more demanding experience or worse 
perceived performance.  

Perceived usability  

An adapted System Usability Scale (SUS) was used to measure participants’ perceived usability 
of each input method with the mobility condition. The SUS is an industry-standard 10-item 
questionnaire with 5 response options (Strongly Disagree to Strongly Agree) that is summarized 
as a single score between 0–100 (Brooke, 2013). Higher scores indicate higher perceived 
usability. The scale was adapted by replacing “system” with “input method.” 

Perceived performance and preference  

Perceived accuracy, perceived speed, and overall preference with each input method and 
mobility condition was measured using a 50-point scale with higher scores reflecting more 
preferred or better in terms of accuracy or speed.  

Intent to use  

Participants rated the likelihood they would use each input method with each mobility condition 
on a 0–10 scale with a 10 being very likely. 

Anthropometric Measurements 
A sliding digital caliper was used to measure the typing hand of each participant. Hand 
measurements included the length and width of hand, length, width, and circumference of the 
index finger and thumb in millimeters. Thumb dimensions were later excluded from analysis 
because no participants used their thumb to type. 

Results 

All dependent measures were analyzed using a 2 x 2 x 2 mixed model ANOVA. Partial eta 
squared (ηp

2) was used to estimate effect size for all ANOVA tests. Analyses of simple main 
effects were conducted to follow-up on all significant interactions. Bonferroni correction was 
used to control for family-wise Type I error across multiple comparisons.  

Typing Speed 
Significant main effects of input method and mobility were found for typing speed (WPM), with 
participants typing faster with trace (M = 35.33, SD = 9.01) than tap (M = 29.88, SD = 6.86) 
and when standing (M = 32.25, SD = 7.76) than walking (M = 29.88, SD = 8.21): F(1, 30) = 
77.42, p < .001, ηp

2 = .72; F(1, 30) = 19.69, p < .001, ηp
2 = .40, respectively. No other main 

effects or interactions were found for WPM, p > .05. Figure 3 shows typing speed by input 
method, mobility, and experience.  
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Figure 3. Typing speed. Error bars represent ± 1 standard error.  
TR = Trace, TA = Tap, S = Stand, W = Walk. 

Typing Accuracy 
Significant main effects of input method and mobility were found for typing accuracy (WER), 

with participants typing more accurately with trace (M = .10, SD = .07) than tap (M = .14, SD 
= .12) and when standing (M = .10, SD = .08) than walking (M = .15, SD = .11): F(1, 30) = 
5.82, p = .02, ηp

2 = .16; F(1, 30) = 20.57, p < .001, ηp
2 = .41, respectively.  

A significant main effect of mobility was found for substitution error rate with participants typing 

fewer substitution errors when standing (M = .07, SD = .06) than walking (M = .11, SD = .08); 
F(1, 30) = 14.65, p = .001, ηp

2 = .33. 

Significant main effects of experience, input method, and mobility were found for insertion error 

rate, with experts (M = .02, SD = .03) committing fewer insertion errors than novices (M = .04, 
SD = .05); F(1, 30) = 4.86, p = .04, ηp

2 = .14. Participants typed fewer insertion errors with 
trace (M = .01, SD = .01) than tap (M = .05, SD = .05) and when standing (M = .02, SD = .04) 
than walking (M = .03, SD = .05): F(1, 30) = 20.45, p < .001, ηp

2 = .41; F(1,30) = 6.66, p = 
.02, ηp

2= .18, respectively. A significant interaction of input method and experience for insertion 
errors was found; F(1,30) = 4.52, p = .04, ηp

2 = .13. Follow-up analysis revealed novice 
participants made more insertion errors with tap than trace, and novices made more insertion 
errors than experts, p < .05. No other significant main effects or interactions were found, p > 
.05. Figure 4 shows typing accuracy by input method, mobility, and experience. 
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Figure 4. Typing accuracy. Error bars represent ± 1 standard error.  
TR = Trace, TA = Tap, S = Stand, W = Walk. 

Subjective Workload 
A significant main effect of input method was found for frustration with trace (M = 6.73, SD = 

4.79) being rated as less frustrating than tap (M = 10.30, SD = 5.25); F(1, 30) = 16.38, p < 
.001, ηp

2 = .35. A significant main effect of mobility was found for mental, physical, temporal, 
performance, effort, and frustration with standing being rated as less demanding than walking: 
F(1, 30) = 31.30, p < .001, ηp

2 = .51; F(1, 30) = 54.49, p < .001, ηp
2 = .65; F(1,30) = 19.09, 

p <. 001, ηp
2 = .39; F(1,30) = 11.24, p = .002, ηp

2 = .27; F(1,30) = 21.40, p < .001, ηp
2 = 

.42; F(1,30) = 22.00, p < .001, ηp
2 = .42, respectively. No other main effects or interactions 

were found for subjective workload, p > .05. Figure 5 shows perceived workload by mobility.  

 

Figure 5. Perceived workload by mobility (1 = least). Error bars represent ± 1 standard error.  

Perceived Usability 
Significant main effects of experience, input method, and mobility were found for perceived 
usability, with experts (M =75.39, SD = 15.98) reporting higher scores than novices (M = 
57.50, SD = 17.68); F(1,30) = 22.43, p < .001, ηp

2 = .43. Trace (M = 74.10, SD = 16.80) was 
perceived as more usable than tap (M = 58.79, SD = 18.15), and standing (M = 67.77, SD = 
19.48) was perceived as more usable than walking (M = 65.12, SD = 18.64): F(1, 30) = 22.53, 
p < .001, ηp

2 = .43; F(1, 30) = 5.25, p = .03, ηp
2 = .15. No other main effects or interactions 
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were found for perceived usability, p > .05. Figure 6 shows perceived usability score by input 
method, mobility, and experience.  

 

Figure 6. Perceived usability score (100 = highest). Error bars represent ± 1 standard error. 
TR = Trace, TA = Tap, S = Stand, W = Walk. 

Perceived Accuracy, Speed, and Preference 
Significant main effects of experience, input method, and mobility were found for perceived 
accuracy, with experts (M = 37.45, SD = 7.63) having higher perceived accuracy ratings than 
novices (M = 29.22, SD = 11.50); F(1, 30) = 11.57, p = .002, ηp

2 = .28. Trace (M = 36.42, SD 
= 9.65) was perceived as more accurate overall than tap (M = 30.25, SD = 10.61) and standing 
(M = 35.75, SD = 10.34) more than walking (M = 30.92, SD = 10.31): F(1, 30) = 11.90, p = 
.002, ηp

2 = .28; F(1,30) = 24.65, p < .001, ηp
2 = .45. No other main effects or interactions 

were found for perceived accuracy, p > .008. 

Significant main effects of input method and mobility were found for perceived speed, with trace 
(M = 40.08, SD = 6.57) having higher perceived speed ratings than tap (M = 29.38, SD = 9.12) 
and standing (M = 36.89, SD = 8.84) higher than walking (M = 32.56, SD = 9.84): F(1,30) = 

45.77, p < .001, ηp
2 = .60; F(1,30) = 19.48, p < .001, ηp

2 = .39. No other main effects or 
interactions were found for perceived speed, p > .008. 

Significant main effects of experience, input method, and mobility were found for overall 
preference, with experts (M = 34.70, SD = 12.29) having higher overall preference ratings than 

novices (M = 30.02, SD = 11.80); F(1, 30) = 4.32, p = .05, ηp
2 =.13. Trace (M = 38.59, SD = 

9.01) was preferred more overall than tap (M = 26.13, SD = 11.89) and standing (M = 34.52, 
SD = 11.53) more than walking (M = 30.20, SD = 12.62): F(1, 30) = 27.13, p < .001, ηp

2 = 
.48; F(1, 30) = 11.51, p= .002, ηp

2 = .28. No other main effects or interactions were found for 
overall preference, p > .008. Figure 7 shows overall preference by input method, mobility, and 
experience. 
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Figure 7. Overall preference (50 = best). Error bars represent ± 1 standard error.  

TR = Trace, TA = Tap, S = Stand, W = Walk. 

Intent to Use 
Significant main effects of input method and mobility were found for intent to use, with trace (M 
= 7.95, SD = 2.48) having a higher intent to use rating than tap (M = 4.30, SD = 2.88) and 
standing (M = 6.67, SD = 2.95) higher than walking (M = 5.58, SD = 3.45): F(1,30) = 30.29, p 
< .001, ηp

2 = .50; F(1,30) = 22.33, p < .001, ηp
2 = .43, respectively. A significant interaction of 

input method and mobility also was found; F(1,30) = 9.02, p = .01, ηp
2 = .23. Follow-up 

analysis revealed participants rated standing and walking with trace higher on intent to use than 
standing and walking with tap, and they rated tap standing higher than tap walking, p < .05. No 
other main effects or interactions were found, p > .05. Figure 8 shows intent to use by input 
method, mobility, and experience.  

 

Figure 8. Intent to use (10 = best). Error bars represent ± 1 standard error. 
TR = Trace, TA = Tap, S = Stand, W = Walk. 
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Hand Measurements 
To determine whether there was any evidence of the “fat finger” issue, a series of correlations 
were conducted between performance, hand width, index finger width, and index finger length 
in both mobile conditions and both input methods. The range of participants’ hand widths was 
representative of the first to 75th percentile of adult men and women (White, 1980). No 
significant correlations were found, p > .05 (r values ranged from –.27. to +.23). 

Discussion 

This study is the first to explore trace input on a smartwatch while walking. Our results show 

both trace and tap are efficient means of typing on a smartwatch while walking and standing. 
Users were able to achieve 35 WPM with trace and 30 WPM with tap, regardless of mobility or 
experience. These observed trace and tap typing speeds are among the fastest observed on a 
smartwatch even though users were standing or walking (see Appendix). The observed 
superiority of trace over tap is consistent with previous findings (Gordon et al., 2016; Turner et 
al., 2016). Surprisingly, experience with trace input on a smartphone had no significant impact 
on entry speed, an effect previously observed by Turner et al. (2016). It is possible the lack of 
difference between experts and novices is due to the increased variability in performance in the 
walking condition (participants were seated for Turner et al., 2016). Regardless, this suggests 
that users completely unfamiliar to trace input are able to quickly reach the performance level 
of trace experts when typing on a smartwatch after very little practice. In addition, users typed 
32 WPM when standing and 30 WPM when walking; these speeds are nearly three times faster 

than other reported typing speeds on alternative smartwatch keyboards in stationary and 
mobile scenarios (Darbar, Dash, et al., 2016; Hong et al., 2016).  

Prior experience with trace on a smartphone did not seem to have an effect on accuracy. Users 

typed more accurately with trace (10% WER) than tap (14% WER) and more accurately when 
standing (10% WER) than when walking (15% WER). These word error rates are consistent with 
other observed error rates on smartwatches (see Appendix). The increased error rate from 
standing to walking is consistent with the literature (Bergstrom-Lehtovirta et al., 2011; Darbar, 
Dash, et al., 2016; Hong et al., 2016). It is possible the higher error between trace and tap 
when walking is because tap input requires users to lift their finger before and after each 
keystroke. When walking, this task is even more difficult due to the constant motion of the body 
with each step. In contrast, trace requires the user to use one continuous motion to type, so the 
finger is always in contact with the screen. This is likely the reason why tap was rated as more 
frustrating than trace; however, future research should examine the biomechanics of each 
interaction method to investigate further. 

Performance with both input methods and mobility conditions remained high despite key sizes, 
4 mm x 3 mm, being significantly smaller than the recommended key size range for use with a 
smartwatch, 5.7 to 7 mm (Dunlop et al., 2014; Shao et al., 2016). In addition, no evidence of 
the “fat finger” issue or screen occlusion was found as performance was not related to hand or 
finger size. 

We believe the observed superiority of trace over the alternative keyboards shown in the 
Appendix is attributable to three factors. First, users are already familiar with the QWERTY 
keyboard layout, resulting in a shorter learning curve than alternative keyboard layouts. 
Second, the small screen size required less distance for the user’s finger to travel while typing, 

resulting in faster input. Third, the keyboard used in this study included an effective auto-
correct feature.  

Results of this study also add to the limited subjective data typically reported in smartwatch 
typing studies. Subjectively, trace was rated more favorably than tap across all measures. The 

perceived usability scores of both input methods fell within the marginally acceptable to 
acceptable ranges: Good for trace and OK for tap (Bangor, Kortum, & Miller, 2009). With the 
exception of perceived frustration, users reported no difference in perceived workload, a finding 
supported by Sonaike, Bewaji, Ritchey, and Peres (2016). Users also perceived their 
performance as better when using trace and indicated they would prefer to use trace over tap if 
given the choice when typing on a smartwatch. Standing was consistently rated more favorably 
than walking, as expected. Thumb size has been shown to be correlated with user satisfaction 
when typing on smartphone keyboards (Balakrishnan & Yeow, 2008). Interestingly, no 
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significant correlations between hand size, or finger size, and any of the subjective measures 
gathered were found in our study. One potential reason for this is that in Balakrishnan and 
Yeow (2008) all participants typed using a 3 x 4 key keypad and not a full QWERTY keyboard. It 
is likely the 3 x 4 key keyboard layout yielded more cumbersome typing behavior for users with 
larger thumbs. 

Conclusion 

This study expands upon the limited research on smartwatch typing and is the first to explore 
trace input on a smartwatch while walking. We demonstrated both tap and trace are efficient 
methods of typing on a smartwatch QWERTY keyboard in a mobile scenario. Users completely 

naïve to typing on a smartwatch were able to achieve high typing speeds with little practice. 
Trace input appears to be especially well suited for typing on a smartwatch as users were able 
to type 30–35 WPM depending on the mobility condition, regardless of prior experience with 
trace. In addition, users subjectively rated trace easier to use, preferred it over tap, and 
suggested they would use it in the future. Pulvirent (2015) notes, “To make smartwatches a 
long-term device and not simply a quick hit, manufacturers and developers are going to need to 
make them relevant and necessary for daily activities” (para. 6). We believe the addition of a 
familiar, easy-to-use keyboard that yields accurate typing is both relevant and necessary. 
Smartwatch manufacturers should include QWERTY keyboards with trace input as a standard 
feature. 

Limitations 
While this study investigated more realistic smartwatch usage than sitting at a desk, it was still 
conducted as a controlled study in a laboratory setting. A treadmill was used to simulate normal 
walking behavior so we could investigate typing performance in a steady, walking condition. 

Treadmills have been used to simulate walking environments in other studies; one benefit of 
treadmill use is that the participant must maintain a steady walking pace. Walking in more 
natural environments, while more ecologically valid, results in inconsistent gait, as well as 
starting and stopping. More research should be done to examine typing performance in such 
environments where distractions are more likely to occur. In addition, this study evaluated 
college aged individuals who are most likely to be interested in using smartwatch technology. It 
is unknown how the results from this study would transfer to older age groups less familiar with 
the technology. Future research should include a wider range of ages, experience, and 
education levels to test the generalizability of these results. 

Recommendations 
The following are recommendations for the development of smartwatch keyboard technology 
and for future smartwatch studies:  

• Smartwatch manufacturers should incorporate a trace based QWERTY keyboard in all 
smartwatch designs. 

• Developers of novel keyboards should emphasize the importance of gathering 
subjective measures to inform design improvements from the user’s point of view. 

• Future studies should compare trace input against alternative keyboards, such as 
WatchWriter and Swipeboard, in different mobile scenarios on different smartwatch 
designs to see if the superiority of trace generalizes to different mobile scenarios and 

smartwatch designs. 

• Future studies should seek to explore different user age groups, experience, and 
education levels.  

Tips for Usability Practitioners 

The following are suggestions for usability practitioners: 

• Familiarity with keyboard layout may help new users learn new typing techniques 

quickly. 

• Subjective ratings in addition to performance ratings should be collected when studying 
mobile device text input to provide the maximal insight to user satisfaction and 
acceptance. 
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• Treadmills can be used in lieu of more natural walking tasks to provide a controlled 
simulation of walking.  

• Partial counterbalancing of experimental conditions should be used to minimize 
participant fatigue in mobile conditions.  
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Appendix: Observed Typing Performance and Subjective Measures on 

Smartwatch Sized Keyboards 

 

Keyboard Reference P
a
r
tic

ip
a
n

ts
 

Participant 
Mobility 

Entry 
Speed 
(WPM) 

Error 
Rate 
% 

Subjective Measures 

Callout 
Leiva, Sahami, Catalá, 

Henze, & Schmidt, 2015 
20 Seated 

4.31 2.6CER 

NASA-TLX, SUS 7.11 0.8 CER 

8.31 0.7 CER 

DriftBoard Shibata et al., 2016 10 * 9.72 0.6 ER - 

DualKeyQWERTY Gupta & Balakrishnan, 2016 10 * 19.63 5.3TER Q & A 

DualKeySWEQTY Gupta & Balakrishnan, 2016 8 * 7.11 0.8 CER Q & A 

ETAO 
Darbar, Dash, & Samanta, 

2016 
10 

Seated 8.31 0.7 CER 
Perceived Learning Time 

Walking 9.43 7.1TER 

Fleksy 
Chaparro, He, Turner, & 

Turner, 2015 
18 Seated 20.33 16.0TER 

NASA-TLX, SUS, Perceived 
Performance & Preference 

ForceBoard Hsiu et al., 2016 12 * 12.41 9..2TER User Preference 

Invisiboard 
Mottelson, Larsen, Lyderik, 
Strohmeier, & Knibbe, 2016 

12 * 9.52 3.2MWD - 

Optimized 
Alphabetic 
Layout (OAL)4 

Komninos & Dunlop, 2014 20 * 8.13 - NASA-TLX, Qualitative Feedback 

QWERTY-like 
Keypad (QLKP) 

Hong et al., 2015 12 * 9.23 4.3TER Questionnaire, Preference Ratings 

SlideBoard Hong et al., 2015 12 * 12.13 7.9TER Questionnaire, Preference Ratings 

SplitBoard 

Hong, Heo, Isokoski, & Lee, 
2016 

12 
Seated 

14.83 9.0 TER 

Questionnaire, Preference Ratings 

18 10.53 14.0 TER 

 
 
 

12 

 
Standing 

11.53 11.0 TER 

15.03 8.0 TER 

14.53 7.0 TER 

Walking 13.03 12.0 TER 

Hong et al., 2015 24 * 14.83 7.5 TER Questionnaire, Preference Ratings 

Hsiu et al., 2016 12 * 11.93 10.1TER User Preference 

Darbar, Dash, & Samanta, 
2016 

10 
Seated 12.23 10.5 TER 

Perceived Learning Time 
Walking 9.33 12.8 TER 

Standard 
QWERTY 

Hong et al., 2016 

12 

Seated 

13.73 21.0 TER 

Questionnaire, Preference Ratings 
18 

10.03 28.0 TER 

12.03 20.0 TER 

14.53 20.0 TER 

12 
Standing 13.03 23.0TER 

Walking 13.03 23.0TER 

Hong et al., 2015 12 * 12.93 21.4 TER Questionnaire, Preference Ratings 

10 Seated 7.13 22.1 TER Perceived Learning Time 
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Keyboard Reference P
a
r
tic

ip
a
n

ts
 

Participant 
Mobility 

Entry 
Speed 
(WPM) 

Error 
Rate 
% 

Subjective Measures 

Darbar, Dash, & Samanta, 
2016 

Walking 5.23 28.5 TER 

Swipeboard 
Alphabetical 

Shao et al., 2016 12 * 7.33 9.0 CER Questionnaire, Interview 

Swipeboard 
QWERTY 

Chen, Grossman, & 
Fitzmaurice, 2014 

8 * 19.62 17.5 TER - 

Shao et al., 2016 12 * 7.23 10.0CER Questionnaire, Interview,  
Preference 

SwipeKey4 Shao et al., 2016 12 * 11.03 4.4 CER 
Questionnaire, Interview,  

Preference 

SwipeKey5 Shao et al., 2016 12 * 10.93 7.4 CER 
Questionnaire, Interview,  

Preference 

Swype 
Tap 

Turner, Chaparro, & He, 
2016 

16 
Seated 

27.03 8.0 TER NASA-TLX, SUS, Intent to Use, 
Perceived Performance & 

Preference 16 26.03 5.0 TER 

Swype 
Trace 

Chaparro et al., 2015 18 

Seated 

29.33 9.0 TER 
NASA-TLX, SUS, Perceived 
Performance & Preference 

Turner et al., 2016 
16 31.03 6.0 TER NASA-TLX, SUS, Intent to Use, 

Perceived Performance & 
Preference 16 37.03 5.0 TER 

UniWatch4 Poirier & Belatar, 2016 5 Seated 9.83 - - 

Virtual Sliding 
QWERTY 
(VSQ) 

Cha, Choi, & Lim, 2015 20 Seated 

10.82 - 

Preference, Ease of Use 

11.72 - 

11.32 - 

10.62 - 

10.02 - 

WatchWriter 
Gesture 

Gordon, Ouyang, & Zhai, 
2016 

18 Seated 24.03 3.7 CER - 

WatchWriter 
Tap Gordon et al., 2016 18 Seated 22.03 1.5 CER - 

ZoomBoard 

Oney et al., 2013 6 * 9.32 - Qualitative Survey 

Chen et al., 2014 8 * 17.12 19.6TER - 

Mottelson et al., 2016 12 * 9.31 2.1MWD - 

Hong et al., 2015 12 * 9.23 7.1 TER Questionnaire, Preference Ratings 

Leiva et al., 2015 20 Seated 

6.02 1.1 CER 

NASA-TLX, SUS 7.82 1.2 CER 

8.22 1.4 CER 

Hong et al., 2016 

12 

Seated 

9.83 7.0TER 

Questionnaire, Preference Ratings 
18 

8.03 10.0 TER 

9.03 6.0 TER 

9.03 7.0 TER 

12 
Standing 9.03 5.0 TER 

Walking 8.53 8.0 TER 
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Keyboard Reference P
a
r
tic

ip
a
n

ts
 

Participant 
Mobility 

Entry 
Speed 
(WPM) 

Error 
Rate 
% 

Subjective Measures 

Hsiu et al., 2016 12 * 9.53 6.1TER User Preference 

Darbar, Dash, et al., 2016 10 
Seated 8.73 8.6 TER 

Perceived Learning Time 
Walking 8.03 9.8 TER 

ZShift Leiva et al., 2015 20 Seated 

5.41 1.3 CER 

NASA-TLX, SUS 7.21 1.3 CER 

9.11 0.9 CER 
* Mobility not specifically stated, 1 Observed on a smartphone, 2 Observed on a tablet, 3 Observed on smartwatch,  
4 Did not use phrase set from MacKenzie and Soukoreff (2003)  
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