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 Abstract 

Small sample sizes are a fact of life for most usability 
practitioners.  This can lead to serious measurement 
problems, especially when making binary 
measurements such as successful task completion rates 
(p).  The computation of confidence intervals helps by 
establishing the likely boundaries of measurement, but 
there is still a question of how to compute the best 
point estimate, especially for extreme outcomes.  In 
this paper, we report the results of investigations of the 
accuracy of different estimation methods for two 
hypothetical distributions and one empirical distribution 
of p.  If a practitioner has no expectation about the 
value of p, then the Laplace method ((x+1)/(n+2)) is 
the best estimator.  If practitioners are reasonably sure 
that p will range between .5 and 1.0, then they should 
use the Wilson method if the observed value of p is less 
than .5, Laplace when p is greater than .9, and 
maximum likelihood (x/n) otherwise. 
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Introduction 
"What we know is not much. What we do not know is 
immense." (Reportedly the dying words of Pierre-
Simon, Marquis de Laplace, 1749-1827) 
 
In practice (and as recommended in the ANSI Common 
Industry Format for Usability Test Reports), the 
fundamental global measurements for usability tasks 
are successful task completion rates (for a measure of 
effectiveness), mean task completion times (for a 
measure of efficiency), and mean participant 
satisfaction ratings (ANSI, 2001).  In addition to 
providing point estimates for these measurements, it is 
important to compute confidence intervals, especially 
when sample sizes are small (as is the case in any 
endeavor where the cost of a sample is high, such as in 
many usability tests) because confidence intervals 
quantify the uncertainty of a measurement.  The 
usefulness of confidence intervals in decision making is 
well documented (for example, Agresti & Coull, 1998; 
Bradley, 1976; Sauro & Lewis, 2005).  The purpose of 
this paper is to investigate the effectiveness of different 
ways to compute binomial point estimates. 
 
The most common way to measure a successful task 
completion rate is to divide the number of participants 
who successfully completed the task (x) by the number 
of participants who attempted the task (n) to estimate 
p, the population probability of successful completion.  
Statistically, this binomial point estimate is the 
maximum likelihood estimate (MLE) of p. 
 
For example, if five participants attempted Task 1 and 
four completed it successfully, the completion rate (p) 
is .80 (80% if expressed as a percentage).  Suppose 
that in the same usability study, five of five participants 

successfully completed Task 2.  In that case, p = x/n = 
1.00 (100%).  If you were the usability practitioner 
who had conducted the test, how comfortable would 
you be in stating that 100% is the best estimate of the 
population’s completion rate for that task?  You 
probably wouldn’t be too comfortable, but what else 
could you do? 
 
Avoiding Extremes 
Although it receives little attention in introductory 
statistics classes and has had little influence on 
measurement practices in the field of usability 
engineering, there is a rich history of alternative 
methods developed to achieve a more accurate point 
estimate of p than simply dividing the number of 
successes by the number of attempts (for example, see 
Chew, 1971; Laplace, 1812; Manning & Schutze, 
1999).  This need is most evident when there is an 
extreme outcome, specifically, when x=0 (0%) or x=n 
(100%) – especially, but not exclusively, when sample 
sizes are small.   
 
A famous large-sample problem comes from the 
seminal work of Laplace in the early 1800s.  He posed 
the question of how certain you can be that the sun will 
rise tomorrow, given that you know that it has risen 
every day for the past 5000 years (1,825,000 days).  
You can be pretty sure that it will rise, but you can’t be 
absolutely sure.  The sun might explode, or a large 
asteroid might smash the Earth into pieces. In response 
to this question, he proposed the Laplace Law of 
Succession, which is to add one to the numerator and 
two to the denominator ((x+1)/(n+2)).  Applying this 
procedure, you’d be 99.999945% sure that the sun will 
rise tomorrow – close to 100%, but slightly backed 
away from that extreme.   

Pierre-Simon, Marquis de 
Laplace 
 
For more information about the life 
of Laplace and his contributions to 
the development of modern 
practices in probability and 
statistics, visit:  
 
http://en.wikipedia.org/wiki/Laplace 
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The magnitude of the adjustment is greater when 
sample sizes are small.  Referring back to the example 
given in the Introduction, if you observe five out of five 
successes and apply the LaPlace procedure, then your 
estimate of p is 85.7% (x+1=6, n+2=7, p=6/7) rather 
than 100%.   
 
A less famous small-sample problem appears in Chew 
(1971, p. 47).  As Chew expressed it:  
 

It is well known that the maximum likelihood 
estimate (MLE) of p is x/n.  In a problem that 
motivated this paper, the author was asked to 
estimate the probability that a certain radar at the 
U.S. Air Force Eastern Test Range, having 
performed satisfactorily in the preceding 14 missile 
tests, would also perform satisfactorily in the next 
test.  Here, x = n = 14, so that the MLE is unity.  
The customer was rather reluctant to accept this 
estimate, since a probability of unity is often 
associated with absolute certainty.  Other methods 
for deriving point estimates of p, especially when x 
= 0 or n, may be preferable. 

 
An Inventory of Estimation Methods 
The remainder of Chew’s (1971) paper is an inventory 
of different ways to estimate p.  Chew dismisses a 
number of them because they don’t address the 
essential problem of moving estimates away from 
extreme values of p.  Others are very complex and 
require prior knowledge about the distribution of p that 
usability practitioners are not likely to possess.  Two of 
the most promising methods discussed by Chew are the 
Laplace method (discussed above, (x+1)/(n+2)) and 
the Jeffreys method ((x+.5)/(n+1)).  Agresti and Coull 
(1998) discuss the Wilson method ((x+2)/(n+4)).   

 
Note that these methods are all specific cases of the 
general point estimator (x+c2/2)/(n+c2), discussed in 
Wilson (1927) and Agresti and Coull (1998).  When 
c=0, you have the MLE; when c=1, you get the Jeffreys 
point estimator; when c=√2 (the square root of 2), the 
Laplace, and when c=2, the Wilson.  Wilson 
hypothesized that the variation in the value of c should 
reflect the magnitude of a researcher’s belief that the 
sample data is representative of the population (“our 
readiness to gamble on the typicalness of our realized 
experience”, Wilson, 1927, p. 211).  In other words, 
the selected value of c should be the appropriate 
normal score (Z-score) for the level of confidence that 
the researcher wants to achieve.  For 95% confidence, 
the value of Z is 1.96, which is why Wilson selected 2 
as the value of c for his point estimator. 
 
Adjusted Wald Binomial Confidence Intervals 
In their influential study of different methods for 
computing 95% binomial confidence intervals, Agresti 
and Coull (1998) studied Adjusted Wald confidence 
intervals – confidence intervals that use the Wilson 
concept of the point estimator as the center of the 
confidence interval (in contrast to the standard Wald 
method, which uses MLE).  Over a variety of 
hypothetical distributions (Uniform, Beta, Poisson) and 
computational methods (Wald, Adjusted Wald, Clopper-
Pearson Exact, and Score), they found that the 
Adjusted Wald confidence interval provided the best 
coverage probability (in other words, was most likely to 
produce confidence intervals that contained the true 
value of p 95% of the time).   
 
The Wald method, which is the most commonly taught 
method in elementary statistics courses, had terrible 

Classical Binomial Point 
Estimators with Examples 
 
Maximum Likelihood Estimate 
x/n 
 
For x=4, n=5,  
p= 4/5=0.800=80.0% 
 
 
The Jeffreys Method 
(x+.5)/(n+1) 
 
For x=4, n=5,  
p=4.5/6=0.750=75.0% 
 
 
The Laplace Method 
(x+1)/(n+2) 
 
For x=4, n=5,  
p=5/7=0.714=71.4% 
 
 
The Wilson Method 
(x+2)/(n+4) 
 
For x=4, n=5,  
p=6/9=0.667=66.7% 
 
 
95% Approximate Binomial CI 
For x=4, n=5,  
Upper limit: 98% 
Lower limit: 36% 
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coverage.  When sample sizes were less than 20, the 
actual coverage for the Wald method ranged from 65 to 
85% instead of the expected 95%.  In contrast, the 
Exact (Clopper-Pearson) method had coverage that 
always exceeded 95% -- as it should because, by 
definition, an exact interval has coverage equal to or 
greater than the nominal confidence.  But for small 
samples, it tended to be much closer to 99% rather 
than the expected 95%, making it an overly 
conservative method for many applications.   
 
In Sauro and Lewis (2005), we studied the same 
computational methods applied against empirical 
distributions of successful task completion (with the 
population p ranging from .204 to .978) using sample 
sizes of 5, 10, and 15.  These empirical results were 
very similar to those of the hypothetical distributions of 
Agresti and Coull (1998).  The Wald method had poor 
coverage (72% on average instead of the expected 
95%), the Exact method was too conservative 
(99.39%), and the Adjusted Wald was the best 
(96.69%).  We concluded that usability practitioners 
should never use the Wald method to compute 
confidence intervals.  Practitioners should use the 
Adjusted Wald method unless they are running a test 
for which they must have actual confidence equal to or 
greater than the nominal confidence, in which case they 
should use the Exact method.  In contrast to Exact 
intervals, Adjusted Wald intervals have the desirable 
properties of (1) being more likely to have the expected 
coverage (either slightly above or slightly below the 
nominal confidence level) and (2) will be narrower 
(more precise) than exact intervals.  There are a 
number of online calculators that will produce both 
Exact and Adjusted Wald confidence intervals (for 
example, see www.measuringusability.com/wald.htm).  

 
In Search of the Best Point Estimator 
Whether or not they choose to report them to their 
clients, usability practitioners should compute binomial 
confidence intervals whenever they measure successful 
completion rates.  This is the only way to quantify the 
limits of one’s knowledge with this type of data.  Unless 
there is a strong reason to do otherwise, the Adjusted 
Wald interval is the best choice.  But is the midpoint of 
the Adjusted Wald interval (the Wilson point estimator) 
the best point estimator for usability practitioners to 
use?  It would be great if it were, because the process 
of computing an Adjusted Wald confidence interval 
would also produce the best point estimator.  Despite 
its success as a component in the computation of 
Adjusted Wald binomial confidence intervals, there is 
no reason to believe that the Wilson point estimator is 
necessarily more accurate than any other estimator.  
Despite their apparent simplicity, the Laplace and 
Jeffreys estimators are not unprincipled equations.  
Laplace is the Bayesian estimator derived under the 
assumption that all values of p are equally likely, and 
Jeffreys is the Expected Likelihood Estimate (ELE) 
(Manning & Schutze, 1999). 
 
Research Goals 
The purpose of this research was to evaluate the 
accuracy of various point estimators relative to the 
accuracy of the MLE (x/n).  In addition to the Laplace, 
Jeffreys, and Wilson methods, we included a method in 
which we simply split the difference between 0/n and 
1/n when x=0, and between (x-1)/n and (x/n) when 
x=n, and otherwise used MLE (the SplitDif method).  
This provided a simple method for adjusting extreme 
outcomes without affecting non-extreme outcomes. 
 

Research Question 
 
What is the best 
binomial point 
estimator for usability 
practitioners to use? 
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For the Wilson point estimators, we had to decide 
between simplicity (setting c=2) or accuracy of 
computation.  We chose accuracy, using the precise 
estimator for 95% confidence intervals.  Thus, for most 
values of x we calculated the Wilson estimator using p 
= (x+1.962/2)/(n+1.962).  When x=0 or x=n (so one 
side of the confidence interval is fixed), it is necessary 
to use 1.645 (the Z-score for a one-sided 95% 
confidence interval), in place of 1.96.  For these cases, 
we calculated the Wilson estimator using p = 
(x+1.6452/2)/(n+1.6452).   
 
We also needed to select which distributions of p to 
evaluate.  A fundamental distribution is the one in 
which all values of p are equally likely (see Distribution 
1, in which p ranges uniformly from 0.00 to 1.00, with 
an average of .50).  This is consistent with the 
experimental situation in which the practitioner has no 
idea about what to expect – the completion rate is as 
likely to be 1.00 (100%) as it is to be 0.00.   
 
But is this the distribution that most usability 
practitioners experience?  We believe that it probably is 
not.  In practice, it seems unlikely that a usability 
practitioner would test using a task for which the 
probability of success was zero.  If the product were so 
flawed (or the task so unrealistic) that there would be 
total or near total task failure (conditions that should 
be discovered during pilot testing), then the 
practitioner will probably do something other than 
blindly continue with the test.  Some alternatives are to 
(1) report any obvious and serious problems to 
development and get them fixed before testing, (2) 
alter the task if it turns out to be unrealistic, or (3) 
defer including that task in the test until the product 

has changed and the likelihood of successful completion 
has increased.   
 
For this reason, we included two additional distributions 
in this study.  In one, we kept p in the range between 
.5 and 1.0, with all values of p in this range equally 
likely (see Distribution 2, in which p ranges uniformly 
from .50 to 1.0, with an average of .75).  In the other 
(Distribution 3), we used values of p from 59 tasks 
studied in a series of summative usability tests 
conducted on a variety of financial software products 
(from separate groups of participants on different 
occasions).  Note that its shape is more similar to that 
of Distribution 2 than to Distribution 1 (59 values 
ranging non-uniformly from .20 to 1.0, with p 
averaging .79).  We included this empirical distribution 
so we could compare its results with those of the two 
hypothetical distributions to enhance the 
generalizability of our findings and recommendations. 

Method 
We used a variation of the root mean squared error 
(RMSE) to evaluate the accuracy of each of the five 
point estimation methods with each of the three 
distributions for sample sizes of 5, 10, 15, and 20 
participants.  Then, for each value of x, we computed 
the reduction in error (RIE) for each method using the 
MLE method as the standard.  The evaluation of 
Distribution 1 (hypothetical distribution for the full 
range of p), considered 101 cases – each value of p 
from 0.00 to 1.00 with increments of .01.  The 
evaluation of Distribution 2 (hypothetical distribution 
for the upper range of p) was similar, considering the 
51 values of p from 0.50 to 1.00 with increments of 
.01.  For Distribution 3 (empirical distribution), the 
evaluation was over the 59 empirical values of p.   
  

Distribution 1: Full range of p 
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Distribution 2: Upper range of p 
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Distribution 3: Empirical range of p 
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The squared error was the squared difference between 
the actual value of p and the estimated value of p.  To 
account for the likelihood of getting x successes as a 
function of the population p, each squared error value 
for each value of p in the RMSE calculation was 
multiplied by the probability of x given p, computed 
with the binomial probability formula1 (Bradley, 1976).   
For example, consider the case in which p=.90 and 
n=5.  The likelihoods of getting 0, 1, 2, 3, 4, or 5 
successes are, respectively, 0.0000, 0.0005, 0.0081, 
0.0729, 0.3281, and 0.5905.  When p has this high of a 
value, there is very little chance (less than 1/100) that 
x will equal 0, 1, or 2.  The odds are pretty good (just 
under .6) that x will equal 5.   

When x=5, the error measurements for the various 
estimates of p are:  

MLE: x/n = 5/5 = 1.0000 
d = 1.0000-.9000 = .1000 
d2 = .01, P(x=5|p=.9) = .5905 
Error = .01*.5905 = .0059 

Jeffreys: (x+.5)/(n+1) = 5.5/6.0 = .9167 
d = .9167-.9000 = .0167 
d2 = .0003, P(x=5|p=.9) = .5905 
Error = .0003*.5905 = .0002 

Laplace: (x+1)/(n+2) = 6/7 = .8571 
d = .8571-.9000 = -.0429 
d2 = .0018, P(x=5|p=.9) = .5905 
Error = .0018*.5905 = .0011 

Wilson: (x+1.6452/2)/(n+1.6452) = 6.35/7.71 = .8244 
d = .8244-.9000 = -.0756 

                                                 
1 The probability of x successes is the number of combinations of 

n items taken x at a time, multiplied by p taken to the xth 
power, multiplied by 1 minus p taken to the 1 minus xth power, 
formally: P(x) = n!/(x!(n-x)!) * px * (1-p)(n-x)).   

d2 = .0057, P(x=5|p=.9) = .5905 
Error = .0057*.5905 = .0034 

SplitDif: ((x-1)/n + (x/n))/2 = (.8+1)/2 = .9000 
d = .9000-.9000 = 0 
d2 = 0, P(x=5|p=.9) = .5905 
Error = 0*.5905 = 0 

For this example, the SplitDif provided the most 
accurate estimate (Error=0), followed in order by 
Jeffreys (.0002), Laplace (.0011), Wilson (.0034), and 
MLE (.0059).  Note that in this example the value of c 
for the Wilson method was 1.645 rather than 1.96 
because x was equal to n. 

The mean for the RMSE was the average of this type of 
error measurement across all values of p for a given 
distribution, value of x, and method for estimating p.  
The final RMSE was the square root of this mean.   

The reduction in error (RIE) was computed for all point 
estimates (except MLE) by subtracting the RMSE for 
MLE from the RMSE for a point estimate and dividing by 
the RMSE for MLE.  This was done for every value of x 
for each sample size.  For example, the MLE RMSE for 
Distribution 1 when n=5 and x=0 was .0768.  The 
RMSE for the Laplace method was .0513.  The resulting 
RIE was -.3320 ((.0513-.0768)/.0768) – a 33.2% 
reduction in error. 
 
Results 
Distribution 1: Hypothetical Full Range of p 
Figure 1 shows the RMSE results for Distribution 1, 
which is the hypothetical distribution for which all 
values of p are equally likely, and p can range from 0 to 
1.  For all sample sizes and number of successes, the 
best binomial point estimator for this distribution was 
the Laplace method.

Reporting Confidence 
Intervals and Point Estimates 
 
The usual way to report a 
confidence interval is to provide 
the midpoint of the interval, 
plus or minus the distance to 
the endpoints of the interval.  
For example, “The 95% 
confidence interval for the 
satisfaction rating was 
3.6±2.2.”   
 
This is fine when the midpoint 
of the interval is also the best 
point estimate, but this is rarely 
the case for binomial 
confidence intervals – including 
adjusted-Wald binomial 
confidence intervals. 
 
When the midpoint is not the 
best point estimate, we 
recommend reporting the 
endpoints and the point 
estimate.  For example, “With 5 
out of 5 successful completions 
(an observed rate of 100%), 
the Laplace estimate of the true 
successful completion rate was 
85.7%, with a 95% adjusted-
Wald binomial confidence 
interval ranging from 59.9 to 
100%.” 
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Notes for Figure 1 
 
At extreme values of x, all 
nonstandard methods of 
estimating p are more 
accurate than MLE. 
 
The overall magnitude of 
the error curves diminishes 
as n increases, rapidly from 
n=5 to n=10, much slower 
thereafter. 
 
For every value of x for 
every sample size (n), 
there is very little 
difference among the 
LaPlace, Jeffrey, and Wilson 
estimators, but the Laplace 
method is consistently as 
or more accurate than any 
other method. 

Figure 1.  RMSE for Distribution 1 as a function of sample size (n) and number of successes (x). 
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Distribution 2: Hypothetical Upper Range of p 
Figure 2 shows the RMSE results for Distribution 2, 
which is the hypothetical distribution for which all 
values of p are equally likely, but p can only range from 
0.5 to 1.0.  Table 1 shows the detailed results for the 
RIE analysis.  Table 2 summarizes the best estimators 
with the conditions studied for Distribution 2.  When x 
fell outside of the expected range (x/n < .50), the 
Wilson method was the best estimator.  When x/n was 
greater than .80, the best estimator was the Laplace 
method.  Between .50 and .80, the best method was 
the MLE, with a few exceptions in which Jeffreys was 
best (n=5, x=4; n=15, x=11; n=20, x=14). 
 
Distribution 3: Empirical Distribution of p 
Figure 3 shows the RMSE results for Distribution 3, 
which is the empirical distribution in which p ranged 
non-uniformly from 0.2 to 1.0.  Table 3 shows the 
detailed results for the RIE analysis.  Table 4 
summarizes the best estimators with the conditions 
studied for Distribution 3.  When x/n was less than or 
equal to .50, the Wilson method was the best 
estimator.  When x/n was greater than .95, the best 
estimator was the Laplace method, with the exception 
of the case when x=n=5, for which SplitDif was best.  
Between .50 and .85, the best method was the MLE.  
When x/n=.90, Jeffreys was best.   
 
Discussion 
The outcome was clear for Distribution 1.  For every 
combination of conditions, the Laplace method was the 
most accurate (had the greatest RIE).  The results for 
Distributions 2 and 3 were more complex.  For 
unexpectedly low values of x/n – specifically, when x/n 
was less than .50 – the Wilson method was the most 
accurate.  Another reasonably consistent outcome was 

that Laplace was the best estimator for the extreme 
result when x=n.  For the case in which the best result 
was SplitDif (Distribution 3, x=n=5), the RIE for 
Laplace (-.3182) was somewhat less than that for 
SplitDif (-.3807), but was still substantial.  For these 
distributions, when x/n was between .50 and .90, the 
MLE was the best estimator, and Wilson the worst.   
 
Recommendations 
1. Always compute a confidence interval, as it is more 
informative than a point estimate.  For most usability 
work, we recommend a 95% adjusted-Wald interval 
(Sauro & Lewis, 2005).  

2. If you conduct usability tests in which your task 
completion rates typically take a wide range of values, 
uniformly distributed between 0 and 1, then you should 
use the LaPlace method.  The smaller your sample size 
and the farther your initial estimate of p is from .5, the 
more you will improve your estimate of p.  

3. If you conduct usability tests in which your task 
completion rates are roughly restricted to the range of 
.5 to 1.0, then the best estimation method depends on 
the value of x/n.  (3a) If x/n ≤ .5, use the Wilson 
method (which you get as part of the process of 
computing an adjusted-Wald binomial confidence 
interval).  (3b) If x/n is between .5 and .9, use the 
MLE.  Any attempt to improve on it is as likely to 
decrease as to increase the estimate’s accuracy.  (3c) 
If x/n ≥ .9, but less than 1.0, apply either the LaPlace 
or Jeffreys method.  DO NOT use Wilson in this range 
to estimate p, even if you have computed a 95% 
adjusted-Wald confidence interval!  (3d) If x/n = 1.0, 
use the Laplace method.   

4. Always use an adjustment when sample sizes are 
small (n<20).  (It does no harm to use an adjustment 
when sample sizes are larger.)

Online Calculator for Point 
Estimates and Confidence 
Intervals 
 
Our recommendations for 
computing the best point 
estimate have been incorporated 
into the binomial confidence 
interval calculator available at:  
 
measuringusability.com/wald.htm 
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Notes for Figure 2 
 
The Wilson method is most 
accurate when x < n/2. 
 
When n/2 < x < n, the MLE 
is usually the best 
estimate. 
 
When x=n, the Laplace 
method is the most 
accurate. 
 
In many cases, the second- 
and third-best estimators 
are not much worse than 
the best estimator. 
 
The overall magnitude of 
the error curves diminishes 
as n increases, rapidly from 
n=5 to n=10, much slower 
thereafter. 
 

Figure 2.  RMSE for Distribution 2 as a function of sample size (n) and number of successes (x). 
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n=5 
x Wilson LaPlace Jeffreys SplitDif 
0 -0.3012 -0.2444 -0.1432 -0.1704 
1 -0.3152 -0.2074 -0.1210 0.0000 
2 -0.1632 -0.1080 -0.0638 0.0000 
3 0.2199 0.1384 0.0782 0.0000 
4 0.1314 -0.0212 -0.0678 0.0000 
5 -0.3035 -0.3483 -0.2935 -0.3254 

 
n=10 

x Wilson LaPlace Jeffreys SplitDif 
0 -0.2041 -0.1633 -0.0816 -0.1020 
1 -0.2465 -0.1479 -0.0775 0.0000 
2 -0.2279 -0.1360 -0.0735 0.0000 
3 -0.1918 -0.1151 -0.0639 0.0000 
4 -0.1281 -0.0787 -0.0427 0.0000 
5 0.0000 0.0000 0.0000 0.0000 
6 0.1508 0.0873 0.0450 0.0000 
7 0.1290 0.0462 0.0122 0.0000 
8 0.0189 -0.0547 -0.0547 0.0000 
9 -0.0737 -0.1614 -0.1295 0.0000 
10 -0.2583 -0.3021 -0.2417 -0.2563 

 
n=15 

x Wilson LaPlace Jeffreys SplitDif 
0 -0.1429 -0.1429 -0.1429 -0.1429 
1 -0.2000 -0.1200 -0.0400 0.0000 
2 -0.1774 -0.0968 -0.0484 0.0000 
3 -0.1736 -0.0992 -0.0579 0.0000 
4 -0.1615 -0.0938 -0.0469 0.0000 
5 -0.1429 -0.0811 -0.0425 0.0000 
6 -0.1070 -0.0602 -0.0334 0.0000 
7 -0.0429 -0.0264 -0.0132 0.0000 

8 0.0456 0.0246 0.0140 0.0000 
9 0.1115 0.0612 0.0324 0.0000 
10 0.0894 0.0364 0.0132 0.0000 
11 0.0358 -0.0090 -0.0149 0.0000 
12 -0.0057 -0.0484 -0.0427 0.0000 
13 -0.0405 -0.0983 -0.0780 0.0000 
14 -0.0776 -0.1708 -0.1304 0.0000 
15 -0.2308 -0.2832 -0.2273 -0.2343 

 
n=20 

x Wilson LaPlace Jeffreys SplitDif 
0 0.0000 0.0000 0.0000 0.0000 
1 0.0000 0.0000 0.0000 0.0000 
2 -0.1538 -0.0769 -0.0769 0.0000 
3 -0.1333 -0.0667 -0.0333 0.0000 
4 -0.1525 -0.0847 -0.0508 0.0000 
5 -0.1414 -0.0808 -0.0404 0.0000 
6 -0.1301 -0.0753 -0.0411 0.0000 
7 -0.1158 -0.0632 -0.0316 0.0000 
8 -0.0905 -0.0498 -0.0271 0.0000 
9 -0.0558 -0.0300 -0.0172 0.0000 
10 0.0000 0.0000 0.0000 0.0000 
11 0.0594 0.0320 0.0137 0.0000 
12 0.0852 0.0404 0.0179 0.0000 
13 0.0664 0.0290 0.0124 0.0000 
14 0.0344 0.0038 -0.0038 0.0000 
15 0.0073 -0.0218 -0.0218 0.0000 
16 -0.0109 -0.0436 -0.0364 0.0000 
17 -0.0264 -0.0717 -0.0566 0.0000 
18 -0.0405 -0.1093 -0.0810 0.0000 
19 -0.0714 -0.1786 -0.1339 0.0000 
20 -0.2062 -0.2680 -0.2165 -0.2216 

Table 1.  RIE analysis for Distribution 2, with best results bolded.   
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n=5   n=10   n=15   n=20   

x x/n Best x x/n Best x x/n Best x x/n Best 
0 0.00 Wilson 0 0.00 Wilson 0 0.00 Wilson 0 0.00 Wilson 

 1 0.07 Wilson 1 0.05 Wilson 
 1 0.10 Wilson    2 0.10 Wilson 
 2 0.13 Wilson 3 0.15 Wilson 

1 0.20 Wilson 2 0.20 Wilson 3 0.20 Wilson 4 0.20 Wilson 
 4 0.27 Wilson 5 0.25 Wilson 
 3 0.30 Wilson    6 0.30 Wilson 
 5 0.33 Wilson 7 0.35 Wilson 

2 0.40 Wilson 4 0.40 Wilson 6 0.40 Wilson 8 0.40 Wilson 
 7 0.47 Wilson 9 0.45 Wilson 
 5 0.50 MLE    10 0.50 MLE 
 8 0.53 MLE 11 0.55 MLE 

3 0.60 MLE 6 0.60 MLE 9 0.60 MLE 12 0.60 MLE 
 10 0.67 MLE 13 0.65 MLE 
 7 0.70 MLE 11 0.73 Jeffreys 14 0.70 Jeffreys 
    15 0.75 LaPlace 

4 0.80 Jeffreys 8 0.80 LaPlace 12 0.80 LaPlace 16 0.80 LaPlace 
    17 0.85 LaPlace 
 9 0.90 LaPlace 13 0.87 LaPlace 18 0.90 LaPlace 
 14 0.93 LaPlace 19 0.95 LaPlace 

5 1.00 LaPlace 10 1.00 LaPlace 15 1.00 LaPlace 20 1.00 LaPlace 
 

Table 2.  Best estimators for Distribution 2 as a function of sample size (n) and number of successes (x). 
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Notes for Figure 3 
 
The Wilson method is most 
accurate when x ≤ n/2. 
 
When n/2 < x < n, the MLE 
is usually the best 
estimate. 
 
When x=n, the Laplace 
method is the most 
accurate. 
 
In many cases, the second- 
and third-best estimators 
are not much worse than 
the best estimator. 
 
The overall magnitude of 
the error curves diminishes 
as n increases, rapidly from 
n=5 to n=10, much slower 
thereafter. 
 

Figure 3.  RMSE for Distribution 3 as a function of sample size (n) and number of successes (x). 
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n=5 
x Wilson LaPlace Jeffreys Split-Dif 
0 -0.4344 -0.3604 -0.2172 -0.2578 
1 -0.3196 -0.2280 -0.1382 0.0000 
2 -0.1098 -0.0757 -0.0445 0.0000 
3 0.1413 0.0897 0.0516 0.0000 
4 0.5845 0.3092 0.1337 0.0000 
5 -0.1830 -0.3182 -0.3614 -0.3807 

 
n=10 

x Wilson LaPlace Jeffreys SplitDif 
0 -0.3864 -0.3030 -0.1667 -0.1818 
1 -0.4133 -0.2704 -0.1531 0.0000 
2 -0.2815 -0.1891 -0.1092 0.0000 
3 -0.1691 -0.1140 -0.0662 0.0000 
4 -0.0777 -0.0485 -0.0259 0.0000 
5 0.0000 0.0000 0.0000 0.0000 
6 0.0949 0.0535 0.0292 0.0000 
7 0.2417 0.1327 0.0664 0.0000 
8 0.4464 0.2117 0.0893 0.0000 
9 0.3669 0.0258 -0.0749 0.0000 
10 -0.3004 -0.3696 -0.3004 -0.3202 

 
n=15 

x Wilson LaPlace Jeffreys SplitDif 
0 -0.3333 -0.2500 -0.1333 -0.1500 
1 -0.4444 -0.2626 -0.1414 0.0000 
2 -0.3607 -0.2295 -0.1230 0.0000 
3 -0.2345 -0.1517 -0.0897 0.0000 
4 -0.1598 -0.1065 -0.0592 0.0000 
5 -0.1154 -0.0769 -0.0440 0.0000 
6 -0.0625 -0.0365 -0.0208 0.0000 
7 -0.0183 -0.0091 -0.0046 0.0000 

8 0.0156 0.0078 0.0039 0.0000 
9 0.0674 0.0355 0.0177 0.0000 
10 0.1468 0.0751 0.0375 0.0000 
11 0.2458 0.1246 0.0606 0.0000 
12 0.3481 0.1570 0.0648 0.0000 
13 0.3813 0.1115 0.0144 0.0000 
14 0.0870 -0.1605 -0.1605 0.0000 
15 -0.3077 -0.3462 -0.2574 -0.2692 

 
n=20 

x Wilson LaPlace Jeffreys SplitDif 
0 -0.2903 -0.2258 -0.1290 -0.1290 
1 -0.3966 -0.2241 -0.1207 0.0000 
2 -0.4079 -0.2368 -0.1316 0.0000 
3 -0.3372 -0.2093 -0.1163 0.0000 
4 -0.2100 -0.1400 -0.0800 0.0000 
5 -0.1333 -0.0917 -0.0500 0.0000 
6 -0.1111 -0.0741 -0.0444 0.0000 
7 -0.0942 -0.0580 -0.0362 0.0000 
8 -0.0584 -0.0365 -0.0219 0.0000 
9 -0.0201 -0.0134 -0.0067 0.0000 
10 0.0000 0.0000 0.0000 0.0000 
11 0.0200 0.0100 0.0050 0.0000 
12 0.0561 0.0280 0.0140 0.0000 
13 0.1050 0.0548 0.0274 0.0000 
14 0.1659 0.0852 0.0404 0.0000 
15 0.2198 0.1078 0.0474 0.0000 
16 0.2839 0.1271 0.0551 0.0000 
17 0.3260 0.1189 0.0352 0.0000 
18 0.2217 -0.0090 -0.0543 0.0000 
19 -0.0788 -0.2365 -0.1784 0.0000 
20 -0.2840 -0.3128 -0.2263 -0.2346 

 

Table 3. RIE analysis for Distribution 3, with best results bolded. 
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n=5   n=10   n=15   n=20   

x x/n Best x x/n Best x x/n Best x x/n Best 
0 0.00 Wilson 0 0.00 Wilson 0 0.00 Wilson 0 0.00 Wilson 

 1 0.07 Wilson 1 0.05 Wilson 
 1 0.10 Wilson    2 0.10 Wilson 
 2 0.13 Wilson 3 0.15 Wilson 

1 0.20 Wilson 2 0.20 Wilson 3 0.20 Wilson 4 0.20 Wilson 
 4 0.27 Wilson 5 0.25 Wilson 
 3 0.30 Wilson    6 0.30 Wilson 
 5 0.33 Wilson 7 0.35 Wilson 

2 0.40 Wilson 4 0.40 Wilson 6 0.40 Wilson 8 0.40 Wilson 
 7 0.47 Wilson 9 0.45 Wilson 

   5 0.50 Wilson    10 0.50 Wilson 
 8 0.53 MLE 11 0.55 MLE 

3 0.60 MLE 6 0.60 MLE 9 0.60 MLE 12 0.60 MLE 
 10 0.67 MLE 13 0.65 MLE 
 7 0.70 MLE 11 0.73 MLE 14 0.70 MLE 
       15 0.75 MLE 

4 0.80 MLE 8 0.80 MLE 12 0.80 MLE 16 0.80 MLE 
 13 0.87 MLE 17 0.85 MLE 

   9 0.90 Jeffreys    18 0.90 Jeffreys 
 14 0.93 LaPlace 19 0.95 LaPlace

5 1.00 SplitDif 10 1.00 LaPlace 15 1.00 LaPlace 20 1.00 LaPlace

Table 4.  Best estimators for Distribution 3 as a function of sample size (n) and number of successes (x). 



 150 

Acknowledgements 
We wish to express our thanks to Alan Agresti for his 
advice and his caution that the best binomial point 
estimator isn’t necessarily the center of the best 
binomial confidence interval.   
 
References 
Agresti, A., & Coull, B. (1998).  Approximate is better 
than ‘exact’ for interval estimation of binomial 
proportions. The American Statistician, 52, 119-126. 

ANSI.  (2001). Common industry format for usability 
test reports (ANSI-NCITS 354-2001).  Washington, DC: 
American National Standards Institute. 

Bradley, J. V.  (1976).  Probability; decision; statistics.  
Englewood Cliffs, NJ: Prentice-Hall.   

Chew, V.  (1971).  Point estimation of the parameter of 
the binomial distribution.  The American Statistician, 
25, 47-50. 

Laplace, P. S. (1812).  Theorie analytique des 
probabilitites. Paris, France: Courcier. 

Manning, C. D., & Schutze, H.  (1999).  Foundations of 
statistical natural language processing.  Cambridge, 
MA: MIT Press. 

Sauro, J., & Lewis, J. R. (2005).  Estimating completion 
rates from small samples using binomial confidence 
intervals: Comparisons and recommendations. In 
Proceedings of the Human Factors and Ergonomics 
Society 49th Annual Meeting (pp. 2100-2104). Santa 
Monica, CA: Human Factors and Ergonomics Society. 

Wilson, E. B. (1927).  Probable inference, the law of 
succession, and statistical inference. Journal of the 
American Statistical Association, 22, 209-212. 

 

James R. Lewis works as a 
Senior Human Factors Engineer 
in IBM’s Conversational Speech 
Solutions department in Boca 
Raton, FL.  He is a psychologist 
(Ph.D., Psycholinguistics) who 
has had a long interest in 
usability measurement.   

 

 

 

 

 

 

Jeff Sauro is a Six Sigma 
trained Statistician at Oracle in 
Denver, CO. Before Oracle, Jeff 
was a Human Factors Engineer 
at PeopleSoft, Intuit and General 
Electric.  Jeff has presented and 
published on the topic of 
usability metrics at CHI, UPA 
and HFES conferences and 
maintains the website 
measuringusability.com.  Jeff 
received his Masters from 
Stanford University. 

 

 

 

 


