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Abstract

Null hypothesis significance testing (NHST), using p-values
and confidence intervals, has long been the standard in user
research, particularly in large-sample settings like A/B
testing. However, user experience studies often rely on
smaller samples, rapid iterations, and design-driven
outcomes, in which p-values can be difficult to interpret, and
confidence intervals may offer limited practical guidance.
This paper introduces Bayesian statistics as a complementary
framework better suited to these conditions. Unlike the
frequentist view, which treats parameters (such as
satisfaction score) as fixed but unknown quantities—meaning
there is one true value in the population that doesn’t
change—Bayesian methods treat parameters as uncertain
and represent them through probability distributions,
indicating which values are plausible given the data and any
prior knowledge. Bayesian methods enable direct probability
statements about parameters, integration of prior
knowledge, and more interpretable results that align with
iterative UX practices. In this paper, we introduce key
Bayesian tools, such as Bayes factors and credible intervals,
as more informative alternatives to p-values and confidence
intervals that make it easier to compare different models and
express uncertainty in a way that is more useful for iterative
design decisions. Advantages include robustness with small
samples (when using appropriately informative priors),
flexibility in handling hierarchical models (for example, data
in which tasks are nested within users or users are nested
within groups), handling missing data (by estimating values
from the posterior under assumed missingness), and
decision-readiness in design contexts. By reframing
statistical inference around probability, evidence, and prior
knowledge, Bayesian methods provide UX researchers a
more transparent and practical toolkit for guiding design
decisions.

Keywords

Bayesian statistics, UX, statistical significance, Bayes factors,
credible intervals, p-values

Q}@

L

Copyright © 2025-2026, User Experience Professionals Association and the authors. Permission to make digital or
hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. URL: http://uxpajournal.org.



Background

In user research, null hypothesis significance testing (NHST) with p-values has long been the
standard for assessing whether a statistically significant difference exists between two
conditions. However, researchers, including UX researchers, often misuse p-value to decide
which condition is better. It is important to note that p-values do not indicate anything about
the presence or absence of a true effect or difference (Goodman, 2008); they merely reflect
“the probability ... that a statistical summary of the data (for example, the sample mean
difference between two compared groups) would be equal to or more extreme than its observed
value” (Wasserstein & Lazar, 2016, p. 131). Therefore, using p-values alone to judge the
superiority of one condition, like a design, over another is inaccurate and conceptually flawed.
Some researchers may rely on other statistics too, such as confidence intervals and effect sizes,
which provide more nuanced and informative insights for decision-making than p-values. P-
values, confidence intervals, and effect sizes fall under the umbrella of frequentist statistics.

Frequentist statistics are highly effective in many applied fields and are especially well-suited for
large-sample experiments, such as online A/B tests, in which abundant data and opportunities
for replication make them powerful and reliable. However, user research often works under
different constraints. Studies may rely on relatively small sample sizes, rapidly evolving
prototypes, and a need for the findings to directly inform design decisions. In these settings, p-
values become more difficult to interpret: a non-significant result might stem from low
statistical power rather than the absence of an effect, yet a statistically significant result might
be misinterpreted as evidence of practical importance, even when the observed difference is
trivial and negligible.

Bayesian statistics provide a complementary approach to frequentist statistics and are well-
suited to the field of UX. The key difference lies in how each framework describes parameters,
such as task completion time or satisfaction scores. In the frequentist view, parameters are
considered fixed but unknown quantities. For example, it considers one true average
satisfaction score for the population, and the data serve as samples used to estimate that fixed
but unknown value (Greenland et al., 2016). In contrast, the Bayesian view treats parameters
as uncertain and represents that uncertainty with a probability distribution (Bolstad & Curran,
2016). A probability distribution is a mathematical description of how plausible different
parameter values are, given the observed data and any prior knowledge. In practice, rather
than indicating that “the true average task time is exactly 60 s” Bayesian analysis might
indicate “the task time could be between 55 and 70 s, with some values more likely than
others.” This shift in perspective has important implications for how we interpret statistical
results and make inferences and decisions about the data (Gelman et al., 2013).

This shift leads to results that align more naturally with design decisions. For example, Bayesian
analysis can provide a statement such as “there is a high probability that the true average
satisfaction falls within this range,” which directly communicates the likelihood of outcomes,
rather than whether a difference exceeds an arbitrary threshold of statistical significance
(typically ranging from 0.10 to 0.01 in the social sciences). This approach is grounded on Bayes’
theorem, which provides a method for updating beliefs as new evidence becomes available by
integrating prior information with new observed data (Bolstad & Curran, 2016; McElreath,
2018). For instance, if past usability studies show that users typically complete a checkout flow
in about 90 s, this information can be used as a prior distribution when evaluating a new
checkout flow. Even with a small sample, the Bayesian model integrates what is already known
with what has just been observed, producing more stable and interpretable estimates. This
ability to integrate prior knowledge with new data is a major advantage, especially in UX
research in which rapid iteration and small sample sizes are common (Lee & Wagenmakers,
2014). By expressing uncertainty through probabilities, Bayesian methods align well with the
realities of iterative UX research, while NHST remains useful when studies involve large samples
and repeated replications.

The advantages of Bayesian statistics in user research are numerous. In addition to providing a
natural and principled way to combine prior information with observed data (Kruschke, 2018),
Bayesian inference conditions rely on the observed data and a specified model plus prior in
order to form a posterior distribution. The posterior refers to the updated probability of a
hypothesis or parameter after observing new data (Gelman et al., 2013). For example, if you
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test a new design with a small group of users, Bayesian methods let you update your
conclusions directly based on their responses, without requiring a large sample or relying on
repeated replications (thus avoiding reliance on p-values or confidence intervals in which
interpretation depends on long-run repeated sampling). In addition, the results from Bayesian
statistics are more interpretable. For example, Bayesian inference allows researchers to say that
“the true parameter, such as time on task, has a 95% probability of falling within a given
credible interval”—a direct probability statement about the parameter, unlike frequentist
confidence intervals. In a frequentist confidence interval, it would be interpreted as “if we were
to repeat the study many times, about 95% of those intervals would likely contain the true
parameter” (Hazra, 2017).

Bayesian methods are especially useful for handling complex data structures and hierarchical
data (for example, users nested within groups or teams, or repeated measures from the same
users across multiple tasks or time points) and for handling any missing data. For instance,
when analyzing satisfaction scores across multiple groups, if some groups have fewer
responses, a Bayesian model can borrow strength from groups with more data to improve
estimates for smaller groups and still account for uncertainty. Similarly, Bayesian approaches
can handle missing responses without necessarily needing to drop participants or fill in missing
values with the mean or last observation, which are methods that can distort variability and
introduce bias. One limitation, however, is the need to choose priors carefully, especially when
data are limited. Moreover, Bayesian analysis also tends to require more computational power
and statistical expertise than traditional frequentist methods (Dienes, 2016).

Bayes Factors: A More Informative Alternative to P-Values

The Bayes factor (BF) is a cornerstone of Bayesian hypothesis testing and offers conceptual and
practical advantages over traditional p-values. It offers a way to compare two hypotheses using
Bayesian statistics. It indicates how much more likely the data are under one hypothesis than
another. BF is the ratio of the likelihood of the data under two competing hypotheses (usually a
null hypothesis versus alternative hypothesis); BF quantifies the strength of evidence in favor of
one model over another (Kass & Raftery, 1995). Unlike p-values, which only indicate whether to
reject or not reject the null hypothesis, the BF allows researchers to directly compare models
(that is, competing hypotheses). For example, one model might state that “users in group A and
group B complete tasks in the same amount of time,” whereas another model might state that
“users in group A complete tasks faster than users in group B.” The BF indicates how much
more (or less) the data support one model over the other, providing evidence for, or against,
both hypotheses.

The essential difference between BFs and p-values is in hypothesis assessment. A p-value
indicates the probability of observing data as extreme or more extreme than what was
observed, assuming the null hypothesis is true (Wasserstein & Lazar, 2016). In contrast, a BF
assesses how well each hypothesis predicts the existing data, offering a fair comparison
between competing explanations, rather than just trying to reject one (Rouder et al., 2009).
This distinction is particularly important in user research, in which distinguishing between “lack
of evidence,” meaning there is insufficient data to draw conclusions, and “evidence for a lack of
effect,” which indicates that the data actively support the absence of an impact, is crucial
(Dienes, 2016).

BFs are helpful because they don’t depend on repeated sampling. They are robust and allow
early interpretation, providing clarity regarding how strongly the data supports both the null and
alternative hypotheses (Wagenmakers, 2007). Recent reviews also suggest that using BFs to
monitor data collection can lower research costs and minimize participants’ unnecessary
exposure to study tasks (by allowing studies to stop early once sufficient evidence has been
gathered), while maintaining the validity and reliability of statistical inferences (Heck et al.,
2023).

Credible Intervals and Their Interpretation

In Bayesian statistics, a 95% credible interval means there is a 95% posterior probability that
the parameter lies in the interval, conditional on the model and prior (Kruschke, 2018). This is
meaningfully different from the frequentist confidence interval, which reflects the range of
intervals that would likely contain the true population parameter, with some uncertainty, if the
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study were repeated many times (Hazra, 2017). Therefore, Bayesian credible intervals align
better with how researchers naturally think about uncertainty by focusing on what values are
most plausible given the data (Morey & Rouder, 2018).

Credible intervals come from the posterior distribution, which represents the updated beliefs
about a parameter after combining prior knowledge with the data we have collected (Gelman et
al., 2013). This makes them more informative, especially in behavioral research situations
where prior information or theoretical expectations are strong (Lee & Wagenmakers, 2014).
Bayesian methods, when using informative priors, can yield credible intervals that are narrower
and more stable than frequentist confidence intervals, particularly in small-sample settings (Ly
et al., 2016). In UX research, in which prior information is often limited, knowledge gained
across iterative studies can be incorporated to refine subsequent analyses. As a result, Bayesian
credible intervals can provide clearer, more decision-ready estimates of outcomes such as task
success rates or satisfaction scores, even when studies involve relatively few participants.

Bayesian credible intervals are now used in many areas, such as individualized therapy analysis
(such as how a specific person responds to therapy over time) and cognitive modeling (such as
creating mathematical models that simulate how people think, learn, and make decisions)
(Wagenmakers et al., 2011). Their intuitive interpretability and the capacity to directly quantify
the probability of parameters promote transparent and robust reporting. With the rising
accessibility of tools such as JASP and Bayes Factor for R (van Doorn et al., 2021; Morey &
Rouder, 2018), Bayesian credible intervals are expected to also become even more prevalent
for informed decision-making in UX contexts.

Conclusion

Although NHST can highlight whether results are unlikely under a null hypothesis, it often leaves
UX researchers with ambiguities by pointing out what not to believe, without offering clear
guidance on what the collected data do support. Bayesian methods shift the focus from
statistical significance toward decision-readiness, that is, clearer guidance for making informed
design decisions. Bayes factors allow researchers to directly compare competing hypotheses,
and credible intervals provide intuitive probability statements about key UX metrics, such as
satisfaction ratings. Because Bayesian analysis can borrow strength across groups, handle
missing data gracefully, and incorporate prior knowledge from past studies, it aligns naturally
with the iterative and resource-constrained nature of UX research. For practitioners, this means
more interpretable results, clearer communication with stakeholders, and the ability to make
design choices confidently even with modest sample sizes.
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