
 
Vol. 21, Issue 1, November 2025 pp. 1–6 

 
Copyright © 2025–2026, User Experience Professionals Association and the authors. Permission to make digital or 
hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on 
the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. URL: http://uxpajournal.org. 

Beyond P-Values: Bayesian 
Approaches for User Experience 
Research
Mohsen Rafiei 
Assistant Professor of 
Psychology 
University of Arkansas at 
Little Rock 
2801 S University Ave 
Little Rock, AR, USA 
mrafiei@ualr.edu 

Iman Tahamtan 
Lecturer of User Experience, 
University of Tennessee, 
Knoxville 
1345 Circle Park Dr. 
Knoxville, TN, USA 
tahamtan@vols.utk.edu 
 

 

Abstract 
Null hypothesis significance testing (NHST), using p-values 
and confidence intervals, has long been the standard in user 
research, particularly in large-sample settings like A/B 
testing. However, user experience studies often rely on 
smaller samples, rapid iterations, and design-driven 
outcomes, in which p-values can be difficult to interpret, and 
confidence intervals may offer limited practical guidance. 
This paper introduces Bayesian statistics as a complementary 
framework better suited to these conditions. Unlike the 
frequentist view, which treats parameters (such as 
satisfaction score) as fixed but unknown quantities—meaning 
there is one true value in the population that doesn’t 
change—Bayesian methods treat parameters as uncertain 
and represent them through probability distributions, 
indicating which values are plausible given the data and any 
prior knowledge. Bayesian methods enable direct probability 
statements about parameters, integration of prior 
knowledge, and more interpretable results that align with 
iterative UX practices. In this paper, we introduce key 
Bayesian tools, such as Bayes factors and credible intervals, 
as more informative alternatives to p-values and confidence 
intervals that make it easier to compare different models and 
express uncertainty in a way that is more useful for iterative 
design decisions. Advantages include robustness with small 
samples (when using appropriately informative priors), 
flexibility in handling hierarchical models (for example, data 
in which tasks are nested within users or users are nested 
within groups), handling missing data (by estimating values 
from the posterior under assumed missingness), and 
decision-readiness in design contexts. By reframing 
statistical inference around probability, evidence, and prior 
knowledge, Bayesian methods provide UX researchers a 
more transparent and practical toolkit for guiding design 
decisions. 
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Background 
In user research, null hypothesis significance testing (NHST) with p-values has long been the 
standard for assessing whether a statistically significant difference exists between two 
conditions. However, researchers, including UX researchers, often misuse p-value to decide 
which condition is better. It is important to note that p-values do not indicate anything about 
the presence or absence of a true effect or difference (Goodman, 2008); they merely reflect 
“the probability … that a statistical summary of the data (for example, the sample mean 
difference between two compared groups) would be equal to or more extreme than its observed 
value” (Wasserstein & Lazar, 2016, p. 131). Therefore, using p-values alone to judge the 
superiority of one condition, like a design, over another is inaccurate and conceptually flawed. 
Some researchers may rely on other statistics too, such as confidence intervals and effect sizes, 
which provide more nuanced and informative insights for decision-making than p-values. P-
values, confidence intervals, and effect sizes fall under the umbrella of frequentist statistics. 

Frequentist statistics are highly effective in many applied fields and are especially well-suited for 
large-sample experiments, such as online A/B tests, in which abundant data and opportunities 
for replication make them powerful and reliable. However, user research often works under 
different constraints. Studies may rely on relatively small sample sizes, rapidly evolving 
prototypes, and a need for the findings to directly inform design decisions. In these settings, p-
values become more difficult to interpret: a non-significant result might stem from low 
statistical power rather than the absence of an effect, yet a statistically significant result might 
be misinterpreted as evidence of practical importance, even when the observed difference is 
trivial and negligible. 

Bayesian statistics provide a complementary approach to frequentist statistics and are well-
suited to the field of UX. The key difference lies in how each framework describes parameters, 
such as task completion time or satisfaction scores. In the frequentist view, parameters are 
considered fixed but unknown quantities. For example, it considers one true average 
satisfaction score for the population, and the data serve as samples used to estimate that fixed 
but unknown value (Greenland et al., 2016). In contrast, the Bayesian view treats parameters 
as uncertain and represents that uncertainty with a probability distribution (Bolstad & Curran, 
2016). A probability distribution is a mathematical description of how plausible different 
parameter values are, given the observed data and any prior knowledge. In practice, rather 
than indicating that “the true average task time is exactly 60 s” Bayesian analysis might 
indicate “the task time could be between 55 and 70 s, with some values more likely than 
others.” This shift in perspective has important implications for how we interpret statistical 
results and make inferences and decisions about the data (Gelman et al., 2013). 

This shift leads to results that align more naturally with design decisions. For example, Bayesian 
analysis can provide a statement such as “there is a high probability that the true average 
satisfaction falls within this range,” which directly communicates the likelihood of outcomes, 
rather than whether a difference exceeds an arbitrary threshold of statistical significance 
(typically ranging from 0.10 to 0.01 in the social sciences). This approach is grounded on Bayes’ 
theorem, which provides a method for updating beliefs as new evidence becomes available by 
integrating prior information with new observed data (Bolstad & Curran, 2016; McElreath, 
2018). For instance, if past usability studies show that users typically complete a checkout flow 
in about 90 s, this information can be used as a prior distribution when evaluating a new 
checkout flow. Even with a small sample, the Bayesian model integrates what is already known 
with what has just been observed, producing more stable and interpretable estimates. This 
ability to integrate prior knowledge with new data is a major advantage, especially in UX 
research in which rapid iteration and small sample sizes are common (Lee & Wagenmakers, 
2014). By expressing uncertainty through probabilities, Bayesian methods align well with the 
realities of iterative UX research, while NHST remains useful when studies involve large samples 
and repeated replications. 

The advantages of Bayesian statistics in user research are numerous. In addition to providing a 
natural and principled way to combine prior information with observed data (Kruschke, 2018), 
Bayesian inference conditions rely on the observed data and a specified model plus prior in 
order to form a posterior distribution. The posterior refers to the updated probability of a 
hypothesis or parameter after observing new data (Gelman et al., 2013). For example, if you 
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test a new design with a small group of users, Bayesian methods let you update your 
conclusions directly based on their responses, without requiring a large sample or relying on 
repeated replications (thus avoiding reliance on p-values or confidence intervals in which 
interpretation depends on long-run repeated sampling). In addition, the results from Bayesian 
statistics are more interpretable. For example, Bayesian inference allows researchers to say that 
“the true parameter, such as time on task, has a 95% probability of falling within a given 
credible interval”—a direct probability statement about the parameter, unlike frequentist 
confidence intervals. In a frequentist confidence interval, it would be interpreted as “if we were 
to repeat the study many times, about 95% of those intervals would likely contain the true 
parameter” (Hazra, 2017). 

Bayesian methods are especially useful for handling complex data structures and hierarchical 
data (for example, users nested within groups or teams, or repeated measures from the same 
users across multiple tasks or time points) and for handling any missing data. For instance, 
when analyzing satisfaction scores across multiple groups, if some groups have fewer 
responses, a Bayesian model can borrow strength from groups with more data to improve 
estimates for smaller groups and still account for uncertainty. Similarly, Bayesian approaches 
can handle missing responses without necessarily needing to drop participants or fill in missing 
values with the mean or last observation, which are methods that can distort variability and 
introduce bias. One limitation, however, is the need to choose priors carefully, especially when 
data are limited. Moreover, Bayesian analysis also tends to require more computational power 
and statistical expertise than traditional frequentist methods (Dienes, 2016). 

Bayes Factors: A More Informative Alternative to P-Values 
The Bayes factor (BF) is a cornerstone of Bayesian hypothesis testing and offers conceptual and 
practical advantages over traditional p-values. It offers a way to compare two hypotheses using 
Bayesian statistics. It indicates how much more likely the data are under one hypothesis than 
another. BF is the ratio of the likelihood of the data under two competing hypotheses (usually a 
null hypothesis versus alternative hypothesis); BF quantifies the strength of evidence in favor of 
one model over another (Kass & Raftery, 1995). Unlike p-values, which only indicate whether to 
reject or not reject the null hypothesis, the BF allows researchers to directly compare models 
(that is, competing hypotheses). For example, one model might state that “users in group A and 
group B complete tasks in the same amount of time,” whereas another model might state that 
“users in group A complete tasks faster than users in group B.” The BF indicates how much 
more (or less) the data support one model over the other, providing evidence for, or against, 
both hypotheses. 

The essential difference between BFs and p-values is in hypothesis assessment. A p-value 
indicates the probability of observing data as extreme or more extreme than what was 
observed, assuming the null hypothesis is true (Wasserstein & Lazar, 2016). In contrast, a BF 
assesses how well each hypothesis predicts the existing data, offering a fair comparison 
between competing explanations, rather than just trying to reject one (Rouder et al., 2009). 
This distinction is particularly important in user research, in which distinguishing between “lack 
of evidence,” meaning there is insufficient data to draw conclusions, and “evidence for a lack of 
effect,” which indicates that the data actively support the absence of an impact, is crucial 
(Dienes, 2016). 

BFs are helpful because they don’t depend on repeated sampling. They are robust and allow 
early interpretation, providing clarity regarding how strongly the data supports both the null and 
alternative hypotheses (Wagenmakers, 2007). Recent reviews also suggest that using BFs to 
monitor data collection can lower research costs and minimize participants’ unnecessary 
exposure to study tasks (by allowing studies to stop early once sufficient evidence has been 
gathered), while maintaining the validity and reliability of statistical inferences (Heck et al., 
2023). 

Credible Intervals and Their Interpretation 
In Bayesian statistics, a 95% credible interval means there is a 95% posterior probability that 
the parameter lies in the interval, conditional on the model and prior (Kruschke, 2018). This is 
meaningfully different from the frequentist confidence interval, which reflects the range of 
intervals that would likely contain the true population parameter, with some uncertainty, if the 
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study were repeated many times (Hazra, 2017). Therefore, Bayesian credible intervals align 
better with how researchers naturally think about uncertainty by focusing on what values are 
most plausible given the data (Morey & Rouder, 2018). 

Credible intervals come from the posterior distribution, which represents the updated beliefs 
about a parameter after combining prior knowledge with the data we have collected (Gelman et 
al., 2013). This makes them more informative, especially in behavioral research situations 
where prior information or theoretical expectations are strong (Lee & Wagenmakers, 2014). 
Bayesian methods, when using informative priors, can yield credible intervals that are narrower 
and more stable than frequentist confidence intervals, particularly in small-sample settings (Ly 
et al., 2016). In UX research, in which prior information is often limited, knowledge gained 
across iterative studies can be incorporated to refine subsequent analyses. As a result, Bayesian 
credible intervals can provide clearer, more decision-ready estimates of outcomes such as task 
success rates or satisfaction scores, even when studies involve relatively few participants. 

Bayesian credible intervals are now used in many areas, such as individualized therapy analysis 
(such as how a specific person responds to therapy over time) and cognitive modeling (such as  
creating mathematical models that simulate how people think, learn, and make decisions) 
(Wagenmakers et al., 2011). Their intuitive interpretability and the capacity to directly quantify 
the probability of parameters promote transparent and robust reporting. With the rising 
accessibility of tools such as JASP and Bayes Factor for R (van Doorn et al., 2021; Morey & 
Rouder, 2018), Bayesian credible intervals are expected to also become even more prevalent 
for informed decision-making in UX contexts. 

Conclusion 
Although NHST can highlight whether results are unlikely under a null hypothesis, it often leaves 
UX researchers with ambiguities by pointing out what not to believe, without offering clear 
guidance on what the collected data do support. Bayesian methods shift the focus from 
statistical significance toward decision-readiness, that is, clearer guidance for making informed 
design decisions. Bayes factors allow researchers to directly compare competing hypotheses, 
and credible intervals provide intuitive probability statements about key UX metrics, such as 
satisfaction ratings. Because Bayesian analysis can borrow strength across groups, handle 
missing data gracefully, and incorporate prior knowledge from past studies, it aligns naturally 
with the iterative and resource-constrained nature of UX research. For practitioners, this means 
more interpretable results, clearer communication with stakeholders, and the ability to make 
design choices confidently even with modest sample sizes. 
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