
 
Vol. 8, Issue 3, May 2013 pp. 55-60 

 

Copyright © 2012-2013, Usability Professionals’ Association and the authors. Permission to make digital or hard 
copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not 

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the 

first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific 

permission and/or a fee. URL: http://www.usabilityprofessionals.org. 

Five Agile UX Myths
Diana DeMarco Brown  
Principal UX Designer 
Nuance, Healthcare 
Burlington, MA 
United States 
diana.demarco@gmail.com  

 

 

Introduction 

As more and more user experience practitioners dip their 
toes into Agile waters, the practice of Agile user experience 
(UX) continues to evolve and mature. While researching my 
book on Agile UX (Agile User Experience Design: A 
Practitioner's Guide to Making It Work), I talked with 
designers, developers, and consultants about their 

experiences with Agile UX (the practice of designing the user 
experience in an Agile development environment, which is a 
flexible, incremental, iterative design process), and I 
continue to hear stories from the field when I give 
presentations and workshops in my local area. Some 
misconceptions evolved along with our practice and continue 
to persist and color how we approach design when working 
with a development team that engages in Agile software 
development. In my conversations with UX friends and 
colleagues who are in various stages of Agile adoption, I hear 
the same fears consistently expressed—for example, how will 
we fit usability testing in or how will we document our 

designs? Even the question of whether we can produce 
quality designs while working with the many iterations and 
frequent deliverables that are the hallmark of Agile. And yet, 
when I look at UX teams who are successfully implementing 
Agile UX, these concerns seem unfounded. But where there’s 
smoke there’s fire, and each of these issues merit closer 
examination so we can see what the real story is. 

 

mailto:diana.demarco@gmail.com


56 

Journal of Usability Studies Vol. 8, Issue 3, May 2013 

Myth 1. There Is Only One Way to "Do" Agile UX  

There are people who preach that Agile UX should be conducted this way or that, and they all 
have valid methods and legitimate approaches to creating usable designs in an Agile 
environment. Once a team has found a formula that works for them, they will want to shout it 
from the rooftops and present it at every conference that they can. Because they are only 

presenting their own viewpoint, it can sound as if they are sharing the ultimate solution with 
you. For example, some people say that you must have your UX team working a sprint ahead of 
the development team. But you’ll hear other people swearing that working a sprint ahead is just 
a mini-waterfall (or micro version of the traditional—design it, throw it over the wall, and then 
build it—style of production and completely non-Agile). And both camps would be justified. 

It can be easy to lose sight of the fact that these ideas are not one-size-fits-all solutions. Listen 
to what your fellow practitioners have to say, and take inspiration from their examples. 
However, if you find that the approach used by a small co-located team working on a website is 
not a fit for your complex enterprise software project with a geographically diverse team—that’s 
okay. Adapting someone else’s sure-fire method to your own situation may require some 
tweaks, because different challenges require different solutions.  

When you’re evaluating a given method, consider what your situation has in common with 
theirs.  

 Is the organization of their UX team and the larger company similar to yours? 

 Are they dealing with new functionality in an isolated code base or complex legacy code 
with upstream and downstream dependencies?  

 What is their relative maturity with Agile compared to your team’s? 

 Does it sound like they are in a naturally collaborative environment or one that is very 
formal? Listen for cultural cues. 

All of these considerations, especially culture, can affect the way software is designed and 
developed in an Agile environment. Ignoring these factors and trying to fit your square peg into 
someone else’s round hole will only lead to frustration.  

For example, when I embarked on my first Agile project, I attended several presentations given 
by colleagues who had gone down the path before me with great success. They presented 
strategies that had worked for them, including that a parallel sprint approach was the best way 
for the UX team to be effective in an Agile environment. It sounded like a great approach, so I 
engaged my team, fully expecting to replicate what others had done. It took less than a week 

for me to realize that I was going to have to adjust—their model had worked well with a small, 
co-located team, the UX folks had been involved with the project from day one, and were 
dedicated to that project. But we were starting on our project after the engineers had been 
working for several weeks, our large team was in three locations, and I was juggling another 
non-Agile project. While I kept the parallel sprints because it was the best way to have a 
separate pace from the development team, I deviated in many other ways from their model. I 
spent quite a bit of time feeling guilty and “non-Agile,” and I really shouldn’t have. I worked 
with my team in the best way for our situation, and we adjusted as needed when we had 
trouble finding time to collaborate or getting the designs done on time. We may have had a less 
than ideal situation and our process might not have been a textbook example, but we were 
collaborative and communicative, so it worked. If I’d tried to make the team work the way I 
thought an ideal Agile team operated, I would have spent all my time fussing over process and 

not enough time just getting things done. Instead, I took what I needed from the techniques 
my colleagues had shared and made the rest my own. 

Upon reflection, if you see that there’s a mismatch between your situation and someone else’s, 

don’t give up hope. Ideas can be found in the most unlikely places, and even if you can’t fully 
adopt a particular convention, you might be able to borrow an idea or two from it. Or simply use 
their story to spark inspiration to try something new in your organization. Just as you don’t 
need to feel like you should practice Agile UX a certain way, you shouldn’t dismiss an idea out of 
hand. The idea is to understand why a given tactic was so successful in another setting and 
consider how you might influence your team in a different way.  



57 

Journal of Usability Studies Vol. 8, Issue 3, May 2013 

Myth 2. You Can’t Conduct User Research 

When you move from a waterfall environment to an Agile one, it will feel like you flipped a 
switch and are moving at breakneck speed. This feeling is partly due to the fact that you’ve left 
behind a comfortable and familiar rhythm and exchanged it for one in which design activities 
occur more frequently. You may or may not have the luxury of adjusting to and mastering this 
new cadence before you are asked to fit user research activities into the mix. Figuring out how 
you are going to hit your design deadlines can be daunting enough, but where are you going to 
find the time to squeeze in usability testing? If those thoughts have run through your head, you 
are in good company, because that is one of the questions I hear most often. The truth of the 

matter is that most Agile teams are actually able to fit in more customer feedback more 
frequently than is typical with other processes. Both design validation and long-term, deeper 
research projects can be fit in to an Agile cycle. 

Design validation is the easiest to work into an Agile release. The key is planning. Set up a 

regularly occurring time to have customer feedback sessions and conduct them no matter what. 
Too often, we wait until we get to a milestone before showing the product to customers, but 
those milestones often occur too late to make necessary adjustments to the product. Let go of 
the idea that you need a high-fidelity prototype or working code before you can get feedback. 
Schedule a session and bring what you have—hand drawn sketches, wireframes, or concept 
maps—and have a conversation with your users. Or use a version of the Rapid Iterative Testing 
and Evaluation (RITE) technique (learn about it here: http://uxmag.com/articles/the-rite-way-
to-prototype ). Or involve your customer in participatory design. Conducting predictably 
occurring sessions once a week, once a sprint, or once a month will allow you to have constant 
customer engagement throughout the production process. This kind of testing can be conducted 
by UX teams working in parallel sprints and with teams that are working in the same sprint with 

their developers. For teams working within sprint, it will be important to find the right day in the 
cycle to have the testing and then provide the feedback. If you expect the development team to 
act on the feedback immediately, you need to plan the testing event to occur early on in the 
sprint. If your team is comfortable reworking the design in the next sprint or you will be testing 
a design for implementation in the next sprint, then the session needs to happen early enough 
to inform the planning session that will occur to finalize the scope of the sprint.  

Regularly scheduled events also have the added benefit of making it routine for the product 
team to include customer feedback into the process, rather than having usability testing be a 
special occurrence that requires an out of the norm response. When Suzanne O’Kelley at 
AppNexus used this approach, she found that having such routine feedback sessions also 
provided the additional benefit of increasing customer confidence and trust. Customers who 
returned for subsequent sessions could see that their input was taken seriously and acted upon 
because they were able to see the changes in the product as the design evolved. (To learn more 
about this case, read Suzanne’s blog post at http://techblog.appnexus.com/2011/autotagger-a-
case-study-for-lean-ux.) 

Longer term research projects need to be treated a little bit differently. Ideally, research would 
be conducted ahead of a kickoff in order to provide context and data that will inform the 
creation of user stories. If there is a need for this type of deeper research for a project that has 
already kicked off, it would be good for the researcher(s) to be plugged into the cycle and 
functioning as a part of the team. However, because a single piece of research may not fit 

within an iteration, the researcher may need to function a bit outside of the day-to-day rhythm 
of the team. Then when they have findings that they want to share with the team, they should 
try to do so in a way that fits in with how the team typically handles their rework or refactoring. 
It’s critical to be conscious of how to integrate the results into the process and help the team 
react to the findings—sure, you can deliver a presentation or a report, but it’s more important 
that you sit down with the team and work with them to define (or refine) user stories or 
participate in discussions about how to adjust their priorities. 

  

http://uxmag.com/articles/the-rite-way-to-prototype
http://uxmag.com/articles/the-rite-way-to-prototype
http://techblog.appnexus.com/2011/autotagger-a-case-study-for-lean-ux
http://techblog.appnexus.com/2011/autotagger-a-case-study-for-lean-ux


58 

Journal of Usability Studies Vol. 8, Issue 3, May 2013 

Myth 3. No "Upfront" Design Is Allowed  

In traditional waterfall environments, the design of the software is often defined in minute detail 
before development even begins. The design can be nailed down months, if not years, before 
the software ships to the customer. This practice makes it difficult to respond to changes along 
the way and inevitably unanticipated technical challenges or shifting requirements arise that 
necessitate changes. It can be difficult to accommodate such changes without reworking the 
original design significantly, which may not be feasible. There’s also the risk that designers will 
get emotionally attached to their work, having invested so much time and energy in it, that they 
are reluctant to make adjustments. Agile environments are intended to create a culture where 

such course corrections are anticipated and addressed as a part of the process. This means a 
move away from such detailed definition and its accompanying documentation. But it doesn’t 
mean that you should just try to wing it and expect the design to reveal itself to you as you 
move through each iteration. Take a look around at the other functional areas on an Agile team, 
and you’ll see that they’re all working with some sort of high-level plan. The development team 
doesn’t figure it out as they go along and hope that the code fits together coherently, because 
that’s a recipe for disaster for a project of any significant size. We should take a lesson from our 
development peers and recognize the importance of creating a design roadmap, which we 
revisit and update as necessary, that will allow us to create a cohesive user experience. 

This roadmap could be a simple sketch, a workflow diagram, a handful of wireframes, or a 
bunch of colorful Post-its stuck on the wall. Do the least amount of work necessary to give you 
and your team a sense of where the design is heading and be willing to change it often. Not 
only will this practice help you keep your sanity as you get down in the weeds of designing one 
chunk at a time, but it’ll help manage the expectations of the team around you. The design 
roadmap will provide a rough idea of what you are considering for a solution and keep that idea 

in the back of the other functional areas’ minds as they do their work. This foresight will allow 
them to be proactive about identifying potential technical roadblocks for the design as they do 
their own work. Even if the roadmap is the most basic of sketches, it also provides a “face” for 
the product. Often having a visual of some kind gives people a much more concrete sense of 
what’s coming and allows them to raise issues or provide ideas that they might not have had 
otherwise.  

Myth 4. UX Deliverables or Documentation Should NOT Be Created (or MUST 
Be Created)  

There’s a new school of thought that promotes the idea that UX teams should not be producing 
deliverables. On the other hand, those of us who have spent our careers producing deliverables 
are ready to create documents at the drop of the hat. Neither approach is necessarily wrong, 
but before going in either direction it’s important to think through your motivation. 

Documents are a bit of an anathema in Agile because they don’t necessarily support or 
engender collaboration or real communication. No matter how many collaborative sessions you 
conducted to get to a design, the minute you sit down to document the design, you are 
performing a solo activity. And because a design might dynamically change over time, you are, 
at best, just documenting a moment in time. The act of handing off a document for review also 

creates distance between team members. If you are lucky, folks might review the document 
and comment on it, but that is not a real discussion. And the likelihood of anyone reading the 
document again, after the comments are responded to, is pretty slim. So, if you’re looking to 
get away from that entirely, I applaud you. You’re approaching communication in a new way, 
and that is fantastic. But, I’ll also throw the caution flag. If you have an overseas team and 
English is not their first language, there can be a very strong case for producing a brief 
document on occasion. Sending written information and pictures ahead of a meeting is a good 
idea to allow people on the other end to prepare for a discussion. It can also be a good way to 
summarize the collaborative discussions that they miss out on because they are at a different 
location. I’ve had good luck using one-page documents with screenshots and callouts to seed 
discussions with teams based in China. Just bear in mind that using a document in this case is 
to support and enable collaboration, not replace it.  

Small documents can probably serve a similar purpose in other situations as well, but if you are 
reflexively turning to document creation to answer other situations you really need to take a 



59 

Journal of Usability Studies Vol. 8, Issue 3, May 2013 

pause. It can be easy to produce a sketch or a specification or a prototype, and in fact you may 
already have some sketches lying around as artifacts from the design process. So what’s the 
harm in adding a few words to them and distributing them? Well, you could be missing an 
opportunity to engage in a more collaborative activity. I recall whipping up simple one-page 
specs for the benefit of a documentation colleague who was based in a faraway office. It didn’t 
take me very long to put them together, and it was really helpful for her, so I thought I was 

doing a good deed. Until I talked with a colleague who told me that their documentation people 
usually ramped up on the project at the time the UX workload was decreasing, so the UX folks 
would sit down with them and have a meeting to review the designs and bring them up to 
speed. I slapped myself in the forehead and realized that I had missed out on a chance to sit 
down, albeit virtually, with an experienced colleague and possibly improve the design. You may 
be creating similar documents, with the best of intentions, but take a minute and consider 
whether or not the problem you are trying to solve could be addressed in a way that supports 
live, interactive communication. 

Myth 5. You Don't Need To Have Any Agile Training 

There seem to be many teams operating in Agile environments with little or no formal training. 
Most UX folks receive no Agile training at all, even if their company has provided some for the 
development team. However, it is critically important that the UX team members have a well-
informed understanding of the methods that their team is using and what their Agile UX 
colleagues are doing. The UX team is rarely a part of the decision to adopt Agile or even what 

form of Agile to practice. However, because most methods don’t address UX directly, we 
practitioners are responsible for defining how UX fits into Agile practices. And how many Agile 
development environments are exactly the same? How will you define your relationship to a 
process that you have no understanding of? Don’t spend your time re-inventing the wheel. 
Learn from your UX colleagues who have spent years wrestling with Agile—they have a lot to 
tell you. 

There are so many resources out there to support you, even if you don’t have a training budget. 
Start with the Agile Manifesto (www.agilemanifesto.org) and read through the twelve principles. 
This is the foundation of everything Agile, so go to the source and read it for yourself. After 
that, educate yourself on the type of Agile methods your team will be practicing so you can 
understand how it works. Your company may do its own homegrown version of things, but it’s 
still beneficial to learn how a process like Scrum (an Agile process that defines events to 
support increased communication and transparency) works and understand its framework, 
because it gives structure to the intentions of Agile and is a great reference point. Then, start 
looking around to see who’s talking about what in terms of Agile UX. There are tons of blogs 
and groups and presentations and books out there to help you learn more about what your UX 
friends are doing in the world of Agile. 

Conclusion 

When it comes to Agile UX and finding the approach that works best for you, I highly encourage 
the approach of “Trust, but verify.” As the practice continues to mature and evolve, more of our 
colleagues are presenting and publishing on the topic. New tactics and techniques are being 
introduced, and there is a wonderful body of work out there for us to use as inspiration. 
However, it is important to take all of these with a grain of salt. Every Agile team and project is 
different and your mileage may vary. Trust that the advice that they are giving you is solid, but 
verify that their approach will work for you in your situation. Similarly, if you hear a team 
member describe an Agile concept as if it is an immutable truth—take a breath and a closer 
look. There really are few absolutes in the Agile world and “can’ts” and “musts” generally don’t 
apply. It doesn’t mean there isn’t a grain of truth in there, but dig deeply and get to that core 
truth and see what it really means to you and your work. You will probably find that the “can’t” 
is really more of a “shouldn’t” and then learning why you shouldn’t and when you should. That 

exploration is where the real learning and inspiration occurs, making you well-informed and 
creative when defining your Agile UX approach. 

Agile UX can certainly make different demands on you, but making the adjustments is well 
worth it. Ultimately, it may lead to a more collaborative way of working. The other functional 

http://www.agilemanifesto.org/


60 

Journal of Usability Studies Vol. 8, Issue 3, May 2013 

areas will become your co-designers and provide you with more direct support and interaction 
than ever before. It will also provide an opportunity for you to step back and redefine your 
approach to UX in order to fit into a fast-paced, collaborative, communicative environment. 

About the Author 

 

Diana DeMarco Brown 
Ms. Brown, author of the 
recently released book, 
Agile User Experience 
Design: A Practitioner's 
Guide to Making It Work, 
currently works as a 
Principal User Experience 
Designer at Nuance in 
Burlington, MA. She holds 
an MS in Engineering 
Management and a BS in 
Engineering Psychology, 
both from Tufts University. 

 

 

 


