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Abstract 

Weibull analysis is an established method in technical 
reliability analysis for describing and analyzing the lifetime of 
technical parts. This paper describes the approach and 
demonstrates its application on task completion times from 
small-sample usability tests. Fitting a Weibull distribution 

model to observed data lets the analyst estimate task 
completion rates for any given time, and vice versa. Model 
parameters can be related to aspects of technical and 
cognitive efficiency, as well as factors that accelerate or 
decelerate user performance, and therefore are new 
candidate metrics for quantifying user interface (UI) 
efficiency.  

In an analysis of time data from 144 tasks from quantitative, 
summative usability tests, in 98.6% of cases a 3-parameter 
Weibull model could be fitted; individual outlier data points 
had to be removed only in two cases.  

The methodology also affords estimating parameters when 
not all test participants were able to solve the task. For task 
completion rates over .60, the population median time 
estimation (when 50% of users can be expected to solve the 
task) from the full Weibull model can be approximated by 
dividing the geometric mean of successful solution times by 
the task completion rate. Median time estimates should 
however not be understood as means, but rather as the 
“half-life” of the task completion process. 

In the Appendix of this paper there is a link to a spreadsheet 
calculator that I have provided so readers can perform 
Weibull analyses on their own. 
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Introduction 

Task completion time is the most popular metric for user interface efficiency (Coursaris & Kim, 
2011; Hornbæk, 2006; Molich et al., 2010; Sauro & Lewis, 2009). ISO standards require 
completion time statistics as a mandatory part of summative test reports (ISO 25062; ISO TS 
20282). However, the rich body of statistical methods that has been specifically developed both 

in technical reliability analysis and medical survival analysis for understanding time duration 
data has—as yet—received little attention in the user experience field (Rummel, 2014). Weibull 
analysis is a notable exception. In a nutshell, the methodology consists of fitting a Weibull 
distribution model to the data observed and analyzing the model’s parameters.  

Weibull modeling of task completion time distributions has a number of distinct advantages over 
classical summary statistics. First, a well-fitting distribution model provides an estimation of the 
task completion rate at any point in time, and vice versa. Such a model can be used, for 
instance, in business process modeling, in ROI considerations, or to support design decisions 
when comparing design variants. Second, Weibull distribution parameters (discussed in detail 
below) can be quite informative for analyzing the respective contributions of random and non-
random influences to a process. Liu, White, and Dumais (2010) applied the method successfully 
to better understand website dwell time, where they related distribution parameters to specific 
web browsing behaviors. Such parametric information is particularly helpful when users cannot 
be observed directly, like in web analytics, or in large-scale unmoderated online usability tests. 
Third, given sufficient coverage in terms of data sets where a Weibull model can be fitted to the 

data observed, the approach might offer new ways to parametrize user interface efficiency in a 
standardized way. 

In this paper, I outline the pragmatic application of Weibull analysis to task completion times, 
as they can be observed in usability tests. The survival analysis concept of “censored data” will 

be applied to account for the typical situation in usability tests, that not all test participants can 
solve all tasks.  

In order to verify the method’s applicability to real-life testing data, in the empirical part of this 
study, I report the results from an analysis of a large set of data from summative usability tests 

of business software applications. I further discuss those results and draw some conclusions for 
usability practitioners. 

What’s So Special About Time? 
Consider a number of usability test participants attempting to solve a given task. For those 
solving the task, completion times will follow a certain statistical distribution. Let’s consider such 
distributions in detail. 

Different from many other usability metrics, task completion times are rarely normally 

distributed (Sauro, 2011; Sauro & Lewis, 2009; for an in-depth treatment see Luce, 1986). 
Because time cannot be negative, zero is a natural boundary to the distribution: On the left-
hand side, the distribution cannot follow the normal distribution’s familiar bell shape. In 
addition, on the right-hand side, time duration distributions have a typical “long tail.” Often, a 
small number of individuals take much longer than others to solve a task, sometimes multiple 
times as long. This skewedness is characteristic for time distributions; it reflects the way they 
are generated from processes in the world that may have more or less independent steps and 
sub-processes, each with their own demand in time. As users take different steps, make and 
correct mistakes, and so on, completion time will vary between them, thus generating a 
distribution of times. 

A very common distribution of time-to-event intervals is the exponential distribution; one might 
say it’s the equivalent of the normal distribution in the time domain. A characteristic property of 
processes that generate an exponential distribution is that the rate of events does not depend 
on the time and history of their observation, but is constant over time (“memory-less”). 
Radioactive decay is a commonly known example: When exactly a single atom decays is not 
predictable; however, a large set of atoms will decay at a constant rate. Readers will be familiar 

with the term half-life—the time until half the substance has decayed. The next half of the 
remaining substance (i.e., 25% of the initial mass) will take exactly the same time to decay.  



58 

Journal of Usability Studies Vol. 12, Issue 2, February 2017 

 

Figure 1. Distribution of task completion times in an unmoderated online usability test with 69 
participants. This figure shows data in a histogram, time scale values are upper-interval 
boundaries (Rummel, 2014). 

 

Figure 2. Distribution of task completion times in an unmoderated online usability test with 69 
participants. This figure is an exponential probability plot (Rummel, 2014). 

Figure 1 and Figure 2 show an example of completion times from an unmoderated online 
usability test task completed by 69 participants. Note the skewed shape of the histogram on the 
left-hand side of Figure 1; it does not at all look like the familiar bell shape of the normal 
distribution. Figure 2 shows, for the same task, the percentage S of participants still working on 
the task (the “survival” function) as it declines over time on a logarithmic scale. After the first 
participant solved the task at t0 = 6.8s (more on t0 below), the straight arrangement of data 
points indicates that from this point in time, the percentage of users solving the task in a given 
time interval was actually constant: Completion times for this task are exponential-distributed. 
This means they behave much like radioactive decay: If half the users solve the task at time t, 
the next remaining half (25%) will need 2t, the next remaining half (12.5%) 3t, and so on, 
hence the “long tail” in the histogram. Note how the singular data point around 50s in Figure 1 
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perfectly fits into the linear arrangement in Figure 2—it is not an outlier at all. If such a 
distribution can be observed, it is fair to assume that the generating process, users attempting 
to solve the particular task, is driven mostly by randomness1. 

Rummel (2014) observed that task completion times following an exponential distribution are 
rather common. The exponential distribution model however only fits when a constant offset 
time t0 is subtracted from the individual times, and therefore is easily overlooked. The 
exponential distribution model with an offset time affords an interesting interpretation because 
the model mathematically splits the process into a constant (t0) and a stochastic part (the 
exponential). As a constant, t0 can be interpreted as the time contribution of all processes that 
add basically a constant time to the distribution: The time the system needs to respond to user 

input, and the amount of time a user needs to merely operate the user interface, that is, to click 
through the task. System response and mere operation time have typically negligible variance, 
so it is plausible to assume they drive the constant part of the model. The exponential-
distributed part of the model, on the other hand, would result from the process of the test 
participant meeting with, and eventually overcoming, the various challenges imposed by the 
task and the user interface. The “selection” and time costs of those challenges are subject to a 
great deal of randomness, which may explain the exponential behavior of the time distribution. 
If the task solution rate for this part of the process is indeed constant, it is fair to assume a 
basically stochastic generating process. The half-life of this process then would be a metric of 
the system’s cognitive efficiency, as opposed to t0 describing its mechanical efficiency. For 
mathematical convenience, instead of a half-life, reliability analysts have defined the 
characteristic time  as the time, discounting the offset, when 37% (= 1/e; e is Euler’s number) 

are still “alive,” that is, working on the task. 

To summarize, the exponential distribution model separates constant click-thru time from 
stochastic think time. Typically, think time is considerably larger than click-thru time, which 
nicely illustrates the importance of usability, compared to system performance. 

The Weibull Distribution 
Obviously, solving a usability test task is not a purely random process, even though it may be 
heavily influenced by random variables. The Weibull distribution is a convenient extension of the 
exponential distribution model that can cover certain systematic deviations from the 
exponential’s “memory-lessness.” This made it extremely popular in reliability analysis (Tobias 
& Trindade, 2012). It has three parameters: offset time t0, characteristic time , and the so-

called shape parameter . 

Offset and characteristic time conceptually match the parameters of the exponential distribution 
and can also be interpreted as “click time” t0 and “think time” . The shape parameter  

describes systematic deviations from the exponential model. If , the Weibull reduces to the 
exponential distribution with the same characteristic time . A shape parameter < 1 indicates 

that test participants, the longer they are working on a task, solve it even slower than expected 
by the exponential model (that is, if the process were purely random). If > 1, they are faster, 

possibly by an implicit learning process or another accelerating factor. This makes  rather 

interesting when inspecting time distributions in cases where users cannot be directly observed; 
it points at non-random (i.e., probably causal) factors that influence user performance in a 
positive or negative way. 

Figure 3 shows three simulated Weibull time distributions with t0 = 30s, = 100s, and varying 
shape factors . The percentage S of users still working declines over time, beginning at t0. Note 

how for = 1 data points align straight, indicating an exponential distribution. For  = 1.5, 

completion times are shorter that in the exponential distribution, indicating an acceleration in 
the process. For = 0.8, completion times are longer. Note also how all curves intersect at 

ln(S) = -1, that is, S = 1/e: The intersection point indicates the characteristic time . Because 

all curves are translated by t0 = 30s, the intersection occurs on the time scale at t = 130s. 

                                                 
1 This doesn’t necessarily mean the process is inherently chaotic. Rather, influencing variables can be 
randomly distributed, creating the appearance of a stochastic process. The randomness then lies in 
the unsystematic selection of influencing factors in the experiment. 
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Figure 3. Simulated task completion time distributions with t0 = 30s, = 100s and varying 

shape factors . See text for explanations. 

To summarize, with the three parameters t0, , and , the Weibull model—if it fits the data—has 

the potential to numerically describe three rather interesting concepts: click time t0, think time 
, and acceleration . In addition, once parameters are known, expected task completion rates 

for any given time can be calculated directly from the following model equation: 

Equation 1 

𝑇𝐶𝑅(𝑡) = 1 − 𝑒−(
𝑡−𝑡0

𝜏
)𝛾

 

 
Censored Time Data 
A common problem with time data is that they are not always observable for all participants in a 
study. For example, in a medical survival study, participants may —hopefully—survive until the 

end of the study, so their time of death is not observed. In usability testing, in a very similar 
manner, a test participant may not solve the task within the time limit, give up, or come up 
with a wrong solution. Here again, the actual solution time cannot be observed.  

In the usability field, it is currently considered best practice to discard time data from 

unsuccessful test participants (e.g., Sauro & Lewis, 2012). However, researchers often do have 
the information available that a test participant has actively worked on the task in the first 
place, and even how long they tried, and may very well make use of this information. Survival 
analysts have developed a range of methods to deal with so-called censored data; for a 
comprehensive treatment see Klein and Moeschberger (2003). Rummel (2014) discussed this 
problem in detail, in the context of usability testing. For the purpose of this study, a slightly 
simplified approach was taken that will be described below together with the modeling 
technique. 

Method 

In this study, I set out to apply Weibull distribution modeling to a set of usability test data. I 
shall first describe the modeling technique used, then the data set. 

There are various methods for fitting distribution models to time data. Tobias and Trindade 
(2012) identified two different general approaches: maximum likelihood estimates (MLE) and 
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linear rectification, also known as probability plotting. MLE generally have higher accuracy and 
robustness than other methods, in particular when a large number of data is available for 
analysis. In usability tests, however, sample sizes above 15 are rather rare. In addition, it is 
rather common that not all test participants can solve a task, and data sets can include outliers 
that have to be identified and dealt with before parameters can be meaningfully estimated. The 
second approach, linear rectification or probability plotting, affords dealing with these issues in 
a pragmatic and effective manner.  

The basic idea of probability plotting is to reformulate the distribution’s model equation (such as 
in Equation 1 in The Weibull Distribution section) in such a way that a linear equation emerges, 
which then can be approximated with simple regression techniques. For the exponential 

distribution, logarithmizing the model equation suffices; Figures 2 and 3, which depict ln(S) 
over time, are actual probability plots for the exponential distribution. For the Weibull 
distribution, more complex transformations (described below) are necessary to “linearize” the 
model. Linear relationships can be easily visualized and verified in scatter plots. When the plot’s 
axes are scaled appropriately to reflect the transformations used to linearize the respective 
distribution’s model equation, data points align along a straight line, if—and only if—the 
distribution model is applicable to the data (note how in Figure 3, only the data points for =1, 

where the Weibull distribution is in fact exponential, align along a straight line). Regression 
parameters then can be used to calculate distribution parameter estimates and to assess the 
goodness of fit of the model. This technique affords verifying distribution models, identifying 
outliers, and estimating parameters in one analysis step. A small number of data points 
obviously limits its accuracy, but not its applicability; as long as a regression line can be drawn, 
the method yields results. 

Rummel (2014) described in detail how to use the probability plotting method for analyzing task 
completion times with regard to several distributions, and provided a spreadsheet to perform 
the necessary calculations. In this study, I apply this methodology to a set of task completion 
times collected in a number of usability tests conducted at SAP in 2012-2015. In the Appendix 
in this paper, I have provided a link to a specialized spreadsheet for Weibull probability plots. I 
shall first briefly describe the probability plotting method, then the data set. 

Weibull Modeling with Probability Plots 
A probability plot is a scatterplot of observed task completion times against their corresponding 
percentiles in the population. These percentiles form the survival function S and need to be 

estimated. This can be done by ranking task completion times by magnitude; dividing rank 
numbers by sample size would yield a crude estimator of S. In order to achieve a more accurate 
estimation, we need to account for “censored” data points. Suppose a test participant failed a 
task at a certain time. Up to that time they have worked on the task all right so their percentile 
rank in the population cannot be higher than that of someone who solved the task within this 
time. We don’t know the time when they eventually, hypothetically, would have solved the 
task—this information is “censored.” In the test paradigm that I used in this study, censoring, 
however, typically doesn’t happen at random. (For details on random vs. non-random censoring 
see Rummel, 2014. In fact, random task failure—for instance, due to unprovoked equipment 
breakdown—is so rare that for this study I chose to treat all failure cases as non-random.) It is 
fair to assume that any test participant who gives up, or gives a wrong solution to a task 
without noticing their mistake, would need at least as long to eventually solve the task as the 

slowest successful participant. With this assumption, we can assign unsuccessful participants a 
rank (and survival percentile) behind this participant. The exact time and percentile don’t 
matter here, for only times of successful test participants are used in the probability plot. For 
the purpose of this study, the survival function estimate that I used for plotting is calculated 
using the modified Kaplan-Meier (K-M) Product Limit recommended by the National Institute of 
Standards and Technology (NIST/SEMATECH, 2012a; see also Tobias & Trindade, 2012) for 
small samples. This estimate, in case of 100% task completion rate, converges to the 
uncensored case. 

Once times and survival function values are known, a scatterplot can be drawn. The axes of the 
plot are scaled specifically for the distribution under consideration. For the Weibull distribution, 
the time axis is set up as the horizontal axis in natural logarithmic scale (ln[time in seconds]). 
The vertical axis shows the double logarithm of the survival function, ln[ln(1/S)]. If the Weibull 
model fits, data points in the scatterplot will align along a straight line (Figure 4A). Outliers can 
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be immediately spotted by their deviation from this line by more than random fluctuations; 
systematic deviations of data points from the straight line indicate that a different distribution 
model might be more appropriate, or there are incoherencies in the process. 

By fitting a regression line to the scatterplot, distribution parameters can be estimated. The 
regression’s goodness-of-fit parameter R² is a metric for the distribution model’s goodness-of-
fit. If the fit is good, the regression line crosses the (ln) time axis at  and has a slope . 

In a Weibull probability plot, the offset time t0 needs to be subtracted from the data before they 
are entered into the plotting algorithm. Unfortunately, the value of t0 initially is unknown. 
Conceptually, t0 must lie in the interval between 0 (there is no such thing as negative time) and 
the minimum observed task completion time (fastest participants being as fast as an expert 
who “doesn’t have to think”). Within this restriction, we can choose t0 to maximize the model fit, 
namely, the regression equation’s R² value. Using Microsoft Excel’s Solver Add-In, this can be 
automated in a spreadsheet by defining a cell containing a t0 value. Using the RSQ function, 
calculate R² from the x and y columns of the scatterplot that are, respectively, ln(Observed 
Time – t0) and ln[ln(1/S)]. By indicating the cell containing R² as the criterion to be maximized, 
and the cell containing t0 as the cell to be manipulated, Solver quickly converges2 to a t0 value 
that maximizes the model fit R².  

The resulting regression equation’s R² parameter can be used to assess the distribution model’s 
fit to the observed data. R² describes the percentage of variance explained by the regression 
model. A significance test can be based on a table of critical values provided by Filliben (1975; 
after NIST, 2012b) for various sample sizes. On the p = .05 level, for 18 participants, one would 
have to reject a distribution model if R² < .89. For the purpose of this study, with its varying 
sample sizes, let’s choose a more conservative critical R² = .90.  

 

Figure 4. Two Weibull probability plots with good (A) and not-so-good (B) model fit. Vertical 
axis is ln[ln(1/S)], horizontal axis ln(time – t0); time in seconds. Note the lower R² value and 

the “edges” in the data point arrangement in B. The underlying process incoherence in this test 
was caused by a spelling-sensitive search function. 

Data Set 
Task completion times that I used in this study come from a series of summative usability tests, 
conducted at SAP between 2012 and 2015, on business applications in various states of 
technical and design maturity. It should be noted that this application sample is of course not 
representative of SAP’s product palette; applications were chosen by “test-readiness” and 

various feasibility criteria rather than market readiness. All tests used in this study were 

                                                 
2 The Solver algorithm does not always converge to a value between 0 and tmin, depending on the 
starting conditions. Best results have been achieved with t0, initial = tmin-1; in a few cases manual 
maximization of R² was necessary. 
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conducted following a strict protocol that was identical throughout the series. After some warm-
up tasks, participants were given written task descriptions and were asked to paraphrase to the 
test moderator to ensure proper task understanding. In desktop system tests, participants used 
a separate monitor, keyboard, and mouse connected to the test notebook. With this setup, the 
moderator could set up defined starting conditions on the notebook before switching the display 
to the participant’s monitor, which signaled the beginning of the task. Task time was measured 

manually from the appearance of the task screen to the participants’ declaring either their 
solution to the task or failure. For the mobile device tests, time was measured from handing the 
device to the participant to their handing it back after they felt they completed or abandoned 
the task. Moderators gave assistance according to a strict policy: When test participants asked 
for help, they were first asked to re-read the task description. If this didn’t suffice, they were 
informed (if applicable) that the solution could not be found on the current screen. Only if this 
didn’t suffice either, minimally informative help was given (e.g., “Where haven’t you looked 
yet?”). Further assist requests were scored as task failure. 

Results 

Given the intent of this study, to assess the Weibull model’s applicability in usability testing, I 
shall first present results pertaining to the coverage of the model, that is, the extent to which 
Weibull models can be found to fit observed data. Once this is established, the Weibull models’ 
respective parameter estimates can be examined in more detail. 

Model Coverage 
Completion times from 144 tasks out of 16 tests were selected for this study. Based on 
adherence to the above described protocol, absence of known artificialities and number of 
usable data points (a minimum of five participants solving the task that were not outliers), 129 

tasks were conducted on desktop systems, 10 on smartphones, and 5 on tablets. For each test, 
participant numbers ranged from 8 to 18 with a median of 17. Task completion rates ranged 
from .22 to 1 with a median of .75. 

For the Weibull model with offset time, the linear rectification model fit parameter R² exceeded 

the critical value of .90 in 141 cases (98.6%). Figure 5 shows a histogram of the R² values 
observed. Most R² values are indeed in a range where the model fit can be considered quite 
good; the median was R² = .966. Individual outlier times had to be removed in 2 cases (1.4%). 

 

Figure 5. Frequencies of R² values indicating goodness-of-fit for Weibull distribution models of 
the tasks investigated. Ordinate values are upper interval bounds. 

Parameter Estimates 
The following section gives an overview of findings with regard to the Weibull model parameters 
offset time, characteristic time, and shape parameter. Because this is the first inventory of 
Weibull parameters in the usability testing domain, the treatment is necessarily exploratory. In 
addition to the Weibull parameters, I’m investigating median task completion time, a popular 
metric in usability research, and its relationship to Weibull models. 
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Offset time 

As I discussed previously in this paper, the offset time t0 can be interpreted as a constant “click 
time” in which test participants need to click through a task on the ideal path. For this 
interpretation, it is essential that this click time can not only be theoretically postulated but 
actually quantified in a reliable way.  

Figure 6 shows a scatterplot of Weibull model estimates for t0 by minimum observed times tmin. 
The great majority of data points align along the identity line. In a small number of cases there 
are very low t0 estimates from the Weibull model; nine actually equal 0. A closer inspection of 
these nine low-estimate cases does not readily show anything exceptional, neither in terms of 
task completion rate nor model fit. However, because in the modeling technique applied here, 

the estimation of t0 is based on the entire data set, so it is certainly possible that systematic 
influences in later data points have affected the estimate. Indeed, all but one of the nine t0 = 0 
cases have shape factors greater than one, indicating faster-than-expected task completion in 
particular in the slower test participants. 

Cases where the t0 estimate lies neither close to 0 nor the minimum observed time tmin are rare; 
Figure 6 shows only three such cases. Apparently tmin is a rather good approximation of t0, as 
long as the latter is not 0.  

 

Figure 6. Scatterplot of Weibull model estimates of the offset time t0 vs. minimum observed 
times for the same task, respectively. 

Characteristic time 

The characteristic time  is a metric of the duration of the stochastic process overlaid to the 

constant offset time t0. For exponential distributions without offset and 100% task completion 
rate, the characteristic time  would equal the arithmetic mean of completion times. In usability 

tests, the situation typically is different: Offset times are common, as well as failed task 
attempts, and a shape parameter might also be present (see the Shape parameter section). In 
particular, the influence of the task completion rate (TCR) deserves attention. In case TCR is 
low, averages calculated only from successful participants can be expected to bias estimates 
because only the more proficient participants are considered. If, on the other hand, 
characteristic times estimated from the Weibull model excessively deviate from average 
successful times, this raises suspicion towards their validity.  

In 11 cases,  indeed is more than ten times larger than the average of successful completion 

times. In all those cases, the task completion rate is < 0.5. Note that  is the time when the 

Weibull model predicts that 63% of test participants solve the task, which at a task completion 
rate of 50% obviously lies outside the actually observed range. With the number of data points 
also diminishing with low TCR, inaccurate estimates are to be expected.  
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To further investigate the relationship of task completion rates, average successful times, and 
characteristic times, consider Figure 7. The ratio of characteristic and average successful times 
(which would be 1 if both are equal) is drawn on a logarithmic scale over the task completion 
rate. Data points are dispersed along a band of quotient values that, when looking from right to 
left, moves up and widens as task completion rate decreases. In case of task completion 
rates > .6, there is a fairly (log) linear relationship to task completion rates that reflects the 
above mentioned task completion bias. Because t0 is included in the average but not in   can 

be smaller than the average successful completion time. Below a task completion rate of .6, the 
band starts dissolving. Around TCR = .5, higher quotient values start appearing, and below .3 
the band disintegrates to widely scattered values. Apparently a TCR of .6 is a critical value for 
interpreting  For lower TCR, when  is outside the range of actually observed completion times, 

estimates become increasingly inaccurate.  

 

Figure 7. Scatterplot of the ratio of  and the average successful task completion time 

(logarithmic) vs. task completion rate for the same task. 

Shape parameter 

The Weibull distribution model introduces a parameter that is new to the discussion of task 
completion time models, the shape parameter . Figure 8 shows a histogram of  values found in 

the present dataset, within the 113 cases where a Weibull model could be fitted with R² > .90, 
and task completion rate was > .5. The distribution has its peak in the 0,8-0,9 bin, indicating 
that in the majority of cases, the slower test participants needed a slightly longer time to solve 
the task than expected “by chance” (the exponential model). This is according to expectations 
because immature applications were tested. However, there is also a great deal of cases with 
> 1 (32; 28%) where the opposite is true, that is, task completion was accelerated.  

 

Figure 8. Frequencies of shape parameter  values for Weibull distribution models of the tasks 

investigated. Ordinate values are upper interval bounds. 
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Previously in this paper, I suggested that a small shape factor might indicate a detrimental 
influence on test participants’ performance. This should also be visible in other usability 
parameters. In fact, the correlation between shape parameters and task completion rates is 
r(111) = .34 (p < .01), indicating smaller shape parameters in case of lower task completion 
rates. 

Point estimate: Median time 

In many applied cases it is useful to have a single point estimate that can be benchmarked or 
otherwise compared to third-party research. Sauro and Lewis (2012) recommended reporting 
the median time, or in case of small samples, the geometric mean which is a good estimator for 
the population median when samples are small and the task completion rate is sufficiently high. 
Median time is the time when 50% of test participants solved the task. The Weibull model 
affords estimating a population median time, simply by solving the model equation for a 
completion time t50 at S = .50. This estimate is independent from the actual task completion 
rate because the modeling process takes task failures explicitly into account. 

For task completion rates above .60, Figure 7 suggests a close and stable relationship between 
, TCR, and the average (log) time calculated from successful participants only. If this 

relationship is systematic enough, can we use it to estimate a population median, that is, to 
correct for the bias introduced by task failures?  

The modified K-M censoring estimate used in the Weibull modeling process, in combination with 
the assumption that failing participants would need at least the solution time of the slowest 
successful one, basically reduces the percentage of cases used for estimation proportionally to 
the task completion rate. So why not estimate t50 by dividing the geometric mean of successful 
test participants’ completion times by the task completion rate? Figure 9 shows a scatterplot of 
such estimates against estimates from the full 3-parameter Weibull model. With a restriction to 
tasks with completion rates > .60, the estimates correlate to r = .98; differences are in the 
10% range. For lower task completion rates, the correlation diminishes rapidly (.92 for TCR > 
.5; .85 for TCR > .4). 

 

Figure 9. Scatterplot of Weibull model estimates of the population median time t50 vs. the 
geometric mean of successful task completion times, divided by task completion rate for the 
same task. Plot shows only TCR > .60 cases. 
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Discussion 

In this study, I have demonstrated the applicability of the Weibull distribution model to usability 
test data, and have given a first orientation to which extent this model can be expected to 
apply. Typically, more than one distribution model can be reasonably well fitted to a set of data, 
so the choice of a distribution model depends to some degree on the researcher’s discretion and 
intentions (Tobias & Trindade, 2012, detailed guidance provided on p. 95). The 3-parameter 
Weibull model has distinct advantages for usability practitioners. First, apparently it covers such 
a wide range of observed distributions that it can, for practical purposes and with reasonable 
precautions, claim universal applicability. Second, as a straightforward extension of the 

“memory-less” exponential distribution model, Weibull model parameters can be interpreted in 
terms of key factors in user experience research.  

The offset time t0, as a constant, can be related to the less variable components of task 
completion time, that is, technical performance and the time needed to click through a process 

on the ideal solution path. This interpretation, suggested by Rummel (2014), needs to be taken 
with a grain of salt. A comparison with the minimum observed time tmin is instructive: The fact 
that in most cases t0 ≅ tmin supports its interpretation as click time; however, the equation does 

not always hold. The data set investigated here contains a number of instances with low or very 
low offset times, most of which, but again not all, show higher-than-usual shape factors . 

Consequently, if t0 is different from tmin, it is difficult to tell where the difference comes from—
whether t0 or tmin is the actual click time. Because t0 is numerically rather small, compared with 
average or characteristic times, small differences will have a relatively large impact. 
Consequently, quantitative interpretation of t0 requires great caution. In practice, our 
experience at SAP has shown that in comparative test designs, where test conditions and 
process characteristics are comparable between alternatives, interpreting t0 is certainly possible 
and meaningful. As a benchmark metric, where KPIs may be discussed out of context, t0 is 
rather questionable unless it is close to tmin. Rather than determining click time from the 
distribution of usability test task times, practitioners may prefer considering other data 
sources—if they are available, which in online research, often they are not. 

The characteristic time , as a model parameter, represents a single-point efficiency metric of 

the stochastic part of the process. The above discussion of t0 shows that  is actually the more 

interesting parameter, as it does not depend on the technical and mechanical efficiency of the 
UI and may very well, as Rummel (2014) suggested, be interpreted as cognitive efficiency. 
However, because it corresponds to the time (discounting t0) when 63% of users solve a task, 
in case of lower task completion rates, it can be a rather theoretical figure. For task completion 
rates above .60, it is certainly interpretable. Between TCR’s of .40 and .60, it should be 
interpreted with care; below .40 the metric becomes questionable (one may indeed question the 
meaning of a predicted time when 63% of users would solve a task, when less than 40% could 
demonstrably solve it). 

The shape parameter  is rather new to the discussion of user interface efficiency. The mere fact 

that test participants need rather long times to complete a task is not necessarily an indicator of 
bad usability or UI efficiency. A task may take a long time simply because it is complex. Also, 
the existence of test participants who need, say, twice as long “as average,” is not an indicator 
per se because instances of long completion times are characteristic for time data as such. A 
small shape parameter , however, is indeed an indicator of usability problems, as task 

completion happens in an even slower way than a “random decay” curve would predict. The 
distribution of shape parameters found in this study indicates that this is common, typically to a 
smallish extent (most ’s are around 1), and with a number of notable exceptions where test 

participants were actually faster than expected just by chance (i.e., under the exponential 
model). 

Taken together, the Weibull distribution model and its parameters have the potential to re-open 
the discussion “what to report” (Sauro & Lewis, 2010) with regard to task times. ISO/IEC 25062 
(2006) requires that task times are reported as “mean time taken to complete each task, 
together with the range and standard deviation of times across participants” (clause 5.4.4.2 
Efficiency). It now becomes clear that this guidance, obviously inspired by the normal Gaussian 
distribution model, can be misleading. Consider, as a special case of the Weibull distribution, an 
untranslated, “pure” exponential distribution. This distribution’s standard deviation equals its 
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arithmetic mean, and both equal characteristic time . The standard deviation, in the 

exponential and Weibull distribution family, therefore is not only a dispersion metric but also 
one of magnitude. The mean, on the other hand, is not at all the distribution’s midpoint, nor is it 
independent from the standard deviation, as would be expected in the normal distribution 
model. Not only are the values of those parameters inappropriate descriptions of a time 
distribution, but the very concepts carry a serious risk of misunderstanding. 

Obviously, communicating the Weibull model and the meaning of its parameters to stakeholders 
who are not trained in statistics is a great challenge, which may take valuable meeting time in 
test results communication. Sauro and Lewis (2010, 2012) pragmatically addressed these issues 
by recommending to logarithmize all times before calculating means, standard deviations, and 
confidence intervals. This effectively compensates the skewedness of the distribution and solves 
most practical problems in significance testing. In this study, I have validated this approach: 
The log transformation indeed can “normalize” a Weibull distribution to such an extent that 
practitioners can rely on the robustness of classical statistical methods. However, the risk 

remains that stakeholders keep thinking in terms of normal distribution concepts. In addition, 
the findings in this study suggest two important extensions to the logarithmic approach. 

First, as I argued in this paper (see also Rummel, 2014), low task completion rates may distort 
metrics derived from only successful test participants. The empirical results of this study 

support this claim and further demonstrate that, as long as the task completion time is .60 or 
above, the effect of varying task completion rates can be effectively compensated by dividing 
the geomean of successful task times by the task completion rate3. Equation 2 yields a 
reasonable estimate for the (population) median completion time, which is close enough to the 
full Weibull model-based estimate for many practical purposes.  

Equation 2 

 t50  tgeomean,succ./TCR. 

Second, the Weibull model provides insight into the practical meaning of such median times. 
With most  values around 1, most distributions are close to the exponential one. Median times 

here are not the middle, but rather the half-life of task completion. As a rule of thumb, the half-
life of the stochastic task solution process part would be somewhere near median time minus 
minimum time (t50-tmin). Considering that tmin usually is much smaller than t50 and often 
practically negligible, the following Equations 3 and 4 could be used as examples to roughly 
estimate further quantiles. 

Equation 3 

 t75  tmin +2(t50-tmin)  2 t50 

Equation 4 

 t87.5  tmin +3(t50-tmin)  3 t50 

This reasoning has considerable consequences, in particular for business applications: A 
substantial and quantifiable proportion of users can be expected to take multiple times the 
median time to solve a task. Ignoring the exponential distribution’s long tail would instigate 
undue stress on workers and serious misplanning in operations management. A better 

understanding of time distributions would spare project managers a lot of stress and would help 
to remove incorrect project management myths and folklore from the world. 

Readers familiar with statistical literature will have, so far, missed a discussion of confidence 
intervals and reliability of distribution parameters. Confidence intervals have been left out of 

this paper for two reasons. First, the focus of this study was to provide an overview on 
parameters found, not individual instances of usability test results. Second, the calculation of 
confidence intervals requires a different approach from the one taken here, namely, maximum 
likelihood estimations (MLE). I refer interested readers to the literature presented in this paper, 
and especially to Tobias and Trindade (2012) treatment of the subject (see pp. 116–120 in their 
book; they also offer readers spreadsheet tools that are available for download with their book). 

                                                 
3 Analyses not reported here show that this finding is robust with regard to deviations from the 
lognormal distribution, where the geomean would be mathematically equal to the median. 
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MLE methods don’t afford checking data for outliers, nor a model-based estimation of t0. As 
demonstrated in this study, I show that removing outliers is rarely necessary, and tmin is a good 
initial estimator for t0, so MLE methods can be confidently applied. 

As for the reliability of Weibull parameter estimates, it cannot be estimated from the data set 
used in this study; the studies that I worked with had up to 18 participants—small data sets 
indeed for estimating three parameters. Resampling analyses would further reduce the number 
of usable data points. Since in the future, as more large data sets will become available from 
online usability studies (Albert, Tullis, & Tedesco, 2010), this question will hopefully be 
addressed soon. 

Conclusions 

The Weibull distribution model with offset time can be expected to cover a wide range of task 
completion times from usability tests. Once a model has been fitted to observed data, the model 
Equation 1 can be used to estimate expected task completion rates for any point in time, and 

vice versa. In addition, the Weibull model parameters provide insights for which factors 
contributed to the observed task completion times. The offset time t0 reflects time consumption 
by technical performance and click path length. The characteristic time  indicates the duration 

of the more stochastic process of UI usage, which is mostly driven by task complexity and the 
design quality of the user interface. The shape parameter  indicates whether, apart from the 

stochastic process part, factors are present that accelerate or inhibit user performance. 

A further insight from Weibull analysis is how practitioners can deal with varying task 
completion rates. Simple division by the task completion rate suffices to estimate population 
median completion times from the geometric mean of successful task completion times, with 
reasonable accuracy.  

The Weibull model, however, clarifies that those median times are not midpoints, nor is the 
distribution’s “long tail” a mere exaggerated measurement error. Most practitioners and 
stakeholders today are trained to think in terms of a normal distribution, that is, means as 
midpoints and standard deviations as dispersion. These concepts are misleading in the domain 

of task completion times. Usability practitioners should take care to correct that and point out 
that median times are rather “half-life” times than midpoints. 

Tips for Usability Practitioners 

Weibull analysis is particularly useful 

 For analyzing time data from unmoderated studies where individual observation of 
participants is difficult. Cheaters, outliers, and other anomalies show up in probability 
plots as deviations from an otherwise orderly distribution model. Small shape 

parameters point at systemic “friction” in the UI. 

 For estimating task completion rate over time, for instance, when discussing ROI of 
usability investments. Stakeholders are often surprised to learn how many users may 
take several times as long as “average,” without being outliers. 

 For differentiating between “click time” and “think time.” The former is the one IT 
departments care about, the latter is the one with the long tail that slows down 
business processes, and where usability investments take most effect. 

Of course, you’ll still need qualitative observations to determine corrective design actions. The 
quantitative data, however, helps building business cases. For performing a Weibull analysis, 

 A Microsoft® ExcelTM workbook is available to perform the necessary calculations for 
model fitting, and calculating TCR by time, and vice versa. See the Appendix for a link 
to the workbook. 

 Begin your analysis by inspecting the exponential probability plot for any anomalies and 
outliers. Investigate anomalies, and remove outliers before proceeding. 

 Use Solver to find the offset time t0 that yields the best-fitting Weibull model. If Solver 

doesn’t converge, manually fine-tune t0 so that the data points in the Weibull 
probability plot align straight. A good starting value for t0 is tmin -1. 
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 Think of Weibull distribution parameters t0 as “click-thru time,”  as “thinking time”,  as 

“acceleration.” If you find < 1, there is some "friction" in the UI that slows users 

down. Investigate what the friction might be. 

In any case, short of Weibull modeling, 

 You can estimate the time when 50% of users can be expected to solve the task (the 
population median) by dividing the geometric mean of successful task completion times 

by the task completion rate. The division effectively compensates the effect of varying 
task completion rates, as long as they are > .60. 

 Mind that median times are rather a “half-life” than a midpoint. Expect, and 
communicate to expect, much longer task completion times. Time distributions have a 
long tail that has nothing to do with incompetence on the user’s side. As a rule of 
thumb, a quarter of users will need about twice the median time to solve the task. 
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Appendix   

I have provided a specialized spreadsheet calculator so readers can perform Weibull analyses on 
their own for up to 2000 task times; it can be extended for larger datasets. The template opens 
separate workbooks that require Excel 2010 or a later version. For automatically optimizing t0 
estimates, the Excel Solver Add-In is required. To load Solver, select File > Options > Add-Ins 
> Manage > Solver Add-in. 

The workbook implements modified K-M estimates for task completion rates < 1 and also 
contains critical R² values, as provided by NIST/SEMATECH (2012a and b). The workbook 
contains two separate spreadsheets:  

 The first sheet, Analysis, contains calculation and charting templates for probability 
plots to analyze exponential and Weibull distributions. Users can paste in their own data 
and follow further instructions in the sheet. For the Weibull distribution, the workbook 
will calculate parameters from the data entered and evaluate the model fit. Users can 
also enter target times or task completion rates, the spreadsheet then will calculate 
corresponding expected completion rate or time estimates. 

 The second sheet, Significance Levels Table, contains a significance table listing critical 

R² values for different sample sizes. This table should not be removed or changed; it is 
used for looking up the significance assessment of the model fit. 

For analyzing normal and lognormal distributions, and more general analysis scenarios, refer to 
Rummel (2014) where those are discussed and a more generic spreadsheet is provided. 

 

http://uxpajournal.org/wp-content/uploads/spreadsheets/WeibullCalcSheet.xltx

